π平面上冻结黏土破坏函数适用性试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study of the failure function of frozen clay in the π-plane
  • 作者:陈敦 ; 马巍 ; 穆彦虎 ; 周志伟 ; 王大雁 ; 雷乐乐
  • 英文作者:CHEN Dun;MA Wei;MU Yanhu;ZHOU Zhiwei;WANG Dayan;LEI Lele;State Key Laboratory of Frozen Soils Engineering,Northwest Institute of Eco-Environment and Resources,CAS;School of Engineering Science,University of Chinese Academy of Sciences;
  • 关键词:冻土强度 ; π平面 ; 破坏应力比 ; 应力Lode角 ; 空心圆柱仪
  • 英文关键词:strength of frozen soil;;π-plane;;ratio of failure stress;;stress Lode angle;;hollow cylinder testing system
  • 中文刊名:ZGKD
  • 英文刊名:Journal of China University of Mining & Technology
  • 机构:中国科学院西北生态环境资源研究院冻土工程国家重点实验室;中国科学院大学工程科学学院;
  • 出版日期:2019-01-15
  • 出版单位:中国矿业大学学报
  • 年:2019
  • 期:v.48;No.226
  • 基金:国家自然科学基金项目(41401077);国家自然科学基金重点基金项目(41630636,41671069)
  • 语种:中文;
  • 页:ZGKD201901008
  • 页数:7
  • CN:01
  • ISSN:32-1152/TD
  • 分类号:67-73
摘要
为了研究冻土在π平面上的强度特征,利用冻土空心圆柱仪对冻结黏土开展了-6.0℃条件下4个平均主应力p(1.0,3.0,4.5和10.0MPa)和5个应力Lode角θσ(-30.0°,-16.1°,0°,16.1°和30.0°)的定向剪切试验.结果表明:定向剪切路径下冻结黏土的应力-应变曲线均呈现应变硬化特征;随着中主应力系数b值的增加,轴向强度逐渐降低;随着平均主应力p值的增大,中主应力系数b值对广义剪应力-剪应变曲线的影响逐渐减弱;在平均主应力p值较小时,中主应力系数b值的变化对破坏应力比的影响较大,而在平均主应力p值较大时,这一影响则较小;在相同中主应力系数b值下,破坏应力比随着平均主应力的增大而减小.随着平均主应力的增加,π平面上冻结黏土的破坏曲线形状从光滑外凸三角形渐变为圆形,非线性广义强度理论能较好描述这种演化规律.
        To study the strength properties of frozen soil in theπ-plane,a series of directional shear tests were carried out on frozen clay under five stress Lode angles(θσ=-30.0°,-16.1°,0°,16.1°,and 30.0°)and four mean principal stresses(p=1.0,3.0,4.5,and 10.0MPa)at-6.0℃.The results show that the stress-strain behavior of frozen clay performs as strain hardening under directional shearing.With the coefficients of intermediate principal stress(b-value)increases,the axial strength decreases gradually.With the increase of the mean principal stress(p-value),the influence of the b-value on the curve of generalized shear stress-strain weakens.The influence of the b-value on the ratio of failure stress is greater when p-value is small and vice versa.The ratio of failure stress decreases with the p-value increase under the same b-value.In theπ-plane,the failure curve of frozen clay changes from a curve-sided triangle to a circle.Simulation of the test results in this study shows that the generalizednonlinear strength theory(GNST)can describe this evaluation rule better than others.
引文
[1]马巍,王大雁.冻土力学[M].北京:科学出版社,2014:97-157.MA Wei,WANG Dayan.Mechanics of frozen soil[M].Beijing:Science Press,2014:97-157.
    [2]LAI Y M,JIN L,CHANG X X.Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil[J].International Journal of Plasticity,2009,25(6):1177-1205.
    [3]周国庆,况联飞,马金荣,等.深土力学特性研究现状及发展展望[J].中国矿业大学学报,2016,45(2):195-204.ZHOU Guoqing,KUANG Lianfei,MA Jinrong,et al.Status quo and prospects of the deep soil mechanical properties[J].Journal of China University of Mining&Technology,2016,45(2):195-204.
    [4]崔托维奇H A.冻土力学[M].张长庆,朱元林,译.北京:科学出版社.1985:1-9.TSYTOVICH H A.The mechanics of frozen ground[M].Translated by ZHANG C Q,ZHU Y L.Beijing:Science Press,1985:1-9.
    [5]张慧梅,彭川,杨更社,等.考虑冻融效应的岩石损伤统计强度准则研究[J].中国矿业大学学报,2017,46(5):1066-1072.ZHANG Huimei,PENG Chuan,YANG Gengshe,et al.Study of damage statistical strength criterion of rock considering the effect of freezing and thawing[J].Journal of China University of Mining&Technology,2017,46(5):1066-1072.
    [6]阴琪翔,周国庆,赵晓东,等.双向冻结单向融化土冻融循环下的融沉及压缩特性[J].中国矿业大学学报,2015,44(3):437-443.YIN Qixiang,ZHOU Guoqing,ZHAO Xiaodong,et al.Thaw settlement and compression properties of silty clay under freezing-one direction thawing[J].Journal of China University of Mining&Technology,2015,44(3):437-443.
    [7]TINH J M,MARTIN R T,LADD C C.Mechanisms of strength for frozen sand[J].Journal of Geotechnical Engineering,1983,109(10):1286-1302.
    [8]赵晓东,周国庆,李生生.不同温度梯度冻结中砂加卸荷变形特性研究[J].中国矿业大学学报,2010,39(2):158-162.ZHAO Xiaodong,ZHOU Guoqing,LI Shengsheng.Deformation properties of frozen sand during loading and unloading in the presence of a thermal gradient[J].Journal of China University of Mining&Technology,2010,39(2):158-162.
    [9]YANG Y G,LAI Y M,LI J B.Laboratory investigation on the strength characteristic of frozen sand considering effect of confining pressure[J].Cold Regions Science and Technology,2010,60(3):245-250.
    [10]LAI Y M,YANG Y G,CHANG X X,et al.Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics[J].International Journal of Plasticity,2010,26(10):1461-1484.
    [11]罗汀,罗小映.适用于冻土的广义非线性强度准则[J].冰川冻土,2011,33(4):772-777.LUO Ting,LUO Xiaoying.Applications of generalized Non-Linear strength theory to frozen soil[J].Journal of Glaciology and Geocryology,2011,33(4):772-777.
    [12]LAI Y M,LIAO M K,HU K.A constitutive model of frozen saline sandy soil based on energy dissipation theory[J].International Journal of Plasticity,2016,78(3):84-113.
    [13]ZHANG D,LIU E,LIU X,et al.A new strength criterion for frozen soils considering the influence of temperature and coarse-grained contents[J].Cold Regions Science and Technology,2017,143(8):1-12.
    [14]郭妍,王大雁,马巍,等.冻土空心圆柱仪的研发与应用[J].哈尔滨工业大学学报,2016,48(12):114-120.GUO Yan,WANG Dayan,MA Wei,et al.Development and application of frozen hollow cylinder apparatus[J].Journal of Harbin Institute of Technology,2016,48(12):114-120.
    [15]JIANG Mingjing,SHEN Zhifu,LI Liqing,et al.Anovel specimen preparation method for TJ-1lunar soil simulant in hollow cylinder apparatus[J].Journal of Rock Mechanics and Geotechnical Engineering,2012,4(4):312-325.
    [16]李广信.高等土力学[M].北京:清华大学出版社,2005:114-179.LI Guangxin.Advanced soil mechanics[M].Beijing:Tsinghua University Press,2005:114-179.
    [17]LEE D H,JUANG C H,CHEN J W,et al.Stress paths and mechanical behavior of a sandstone in hollow cylinder tests[J].International Journal of Rock Mechanics&Mining Sciences,1999,36(7):857-870.
    [18]HIGHT D W,GENS A,SYMES M J.The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J].Géotechnique,1983,33(4):355-383.
    [19]施维成,朱俊高,代国忠,等.粗粒土在π平面上的真三轴试验及强度准则[J].河海大学学报(自然科学版),2015,43(1):11-15.SHI Weicheng,ZHU Jungao,DAI Guozhong,et al.True triaxial tests of coarse-grained soil onπ-plane and its strength criterion[J].Journal of Hohai Unixersity(Natural Sciences),2015,43(1):11-15.
    [20]DRUCKER D C,PRAGER W.Soil mechanics and plastic analysis or limit design[J].Quart Appl Math,1952,10(2):157-165.
    [21]LADE P V,DUNCAN J M.Elastoplastic stressstrain theory for cohesionless soil[J].J Geotech Eng Div,1975,101(10):1037-1053.
    [22]MATSUOKA H,NAKAI T.Stress-deformation and strength characteristis of soil under three different principal stresses[J].Proceedings of the Japan Society of Civil Engineers,1974,232:59-70.
    [23]YAO Y,LU D,ZHOU A,et al.Generalized nonlinear strength theory and transformation in stress spaces[J].Science in China,2004,47(6):691-709.
    [24]YAO Y P,HU J,ZHOU A,et al.Unified strength criterion for soils,gravels,rocks,and concretes[J].Acta Geotechnica,2015,10(6):749-759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700