不同温度下表面微缺陷的声表面波定量分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantitative Analysis of Surface-Breaking Defects by Surface Acoustic Waves Under Different Temperatures
  • 作者:陶程 ; 殷安民 ; 应志奇 ; 王煜帆 ; 束学道 ; 彭文飞
  • 英文作者:Tao Cheng;Yin Anmin;Ying Zhiqi;Wang Yufan;Shu Xuedao;Peng Wenfei;Faculty of Mechanical Engineering & Mechanics,Ningbo University;Key Laboratory of Roll Forming Technology of Zhejiang Province;
  • 关键词:激光技术 ; 温度 ; 有限元法 ; 表面微缺陷 ; 声表面波
  • 英文关键词:laser technique;;temperature;;finite element method;;surface-breaking defect;;surface acoustic wave
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:宁波大学机械工程与力学学院;浙江省零件轧制成形技术研究重点实验室;
  • 出版日期:2018-12-10
  • 出版单位:激光与光电子学进展
  • 年:2018
  • 期:v.55;No.635
  • 基金:浙江省自然科学基金(Q17E050012);; 宁波市自然科学基金(2016A610057)
  • 语种:中文;
  • 页:JGDJ201812042
  • 页数:9
  • CN:12
  • ISSN:31-1690/TN
  • 分类号:370-378
摘要
采用有限元法研究了激光激发的声表面波与表面微缺陷的作用机理,在位移信号中选取出能定量表征缺陷深度的特征量(振荡信号),分析了缺陷深度和宽度对振荡信号的影响。根据表面波与缺陷后沿作用的位移场,解释了振荡信号的来源。数值结果表明,振荡信号(特征点A、B)来源于透射表面波在缺陷后沿所产生的振荡,同一温度下特征点A、B到达时间差随表面缺陷深度的增大呈线性增长,与缺陷宽度的变化无关。根据特征点A、B的到达时间差与缺陷深度之间的关系,结合表面波声速与温度之间的关系,实现了不同温度下缺陷深度的定量计算。
        The mechanism of the laser-induced surface acoustic wave interacting with surface-breaking defects is studied by using the finite element method.The characteristic quantity(oscillation signal)quantifying defect depth is selected from the displacement signals and the influences of the defect depth and the width on the oscillation signals are further analyzed.The source of oscillation signals is clarified according to the displacement field occurred in the interaction between the surface acoustic wave and the rear edge of defects.The numerical results show that the oscillation signal with feature points of Aand Boriginates from the oscillation induced at the rear edge of defects by the transmitted surface wave.At the same temperature,the arrival time difference between feature points Aand Bincreases linearly with the defect depth,but is independent of the defect width.According to the relationship between the arrival time difference and the defect depth,the quantitative calculation of defect depths at different temperatures is realized by combining the relationship between the surface wave speed and the temperature.
引文
[1]Zeng X L,Xu L F.Laser ultrasonic technique and its applications in non-destructive testing[J].Laser&Infrared,2002,32(4):224-227.曾宪林,徐良法.激光超声技术及其在无损检测中的应用[J].激光与红外,2002,32(4):224-227.
    [2]Zhu Q,Qiu J H,Zhang C,et al.Application of laser ultrasonic detection method for double-layer laminated material[J].Laser&Optoelectronics Progress,2016,53(3):031402.朱倩,裘进浩,张超,等.双层层压材料中激光超声检测方法的应用[J].激光与光电子学进展,2016,53(3):031402.
    [3]Ruan X Q,Lin X,Huang C P,et al.Ultrasonic nondestructive testing of hole type defects in laser solid forming TC4 alloy[J].Chinese Journal of Lasers,2015,42(12):1203001.阮雪茜,林鑫,黄春平,等.TC4合金激光立体成形孔洞类缺陷的超声检测[J].中国激光,2015,42(12):1203001.
    [4]He N,Luo X H,Zhao Z H,et al.Nondestructive testing method based on fiber coupling and coherent detection[J].Acta Optica Sinica,2017,37(8):0812006.何宁,骆湘红,赵中华,等.基于光纤耦合与相干探测的无损检测方法[J].光学学报,2017,37(8):0812006.
    [5]Zhao Y,Yan W,Shen Z H,et al.Numerical simulation of elastic acoustic wave interaction with surface-breaking defects[J].Laser Technology,2010,34(1):91-94.赵艳,严伟,沈中华,等.弹性声波与表面缺陷相互作用的数值模拟[J].激光技术,2010,34(1):91-94.
    [6]Zhou Z G,Zhang K S,Zhou J H,et al.Application of laser ultrasonic technique for non-contact detection of structural surface-breaking cracks[J].Optics&Laser Technology,2015,73:173-178.
    [7]Guo H L,Zheng B,Liu H.Numerical simulation and experimental research on interaction of microdefects and laser ultrasonic signal[J].Optics&Laser Technology,2017,96:58-64.
    [8]Wang M Y,Zhou Y J,Guo C.Numerical simulation of laser ultrasonic detection of surface micro-crack depth[J].Laser Technology,2017,41(2):178-181.王明宇,周跃进,郭冲.激光超声检测表面裂纹深度的数值模拟[J].激光技术,2017,41(2):178-181.
    [9]Liu H,Zheng B,Wang Z B,et al.Numerical simulation of laser ultrasonic transmitted wave:applied to detect surface defects depth[J].Journal of North University of China(Natural Science Edition),2017,38(2):119-123,139.刘辉,郑宾,王召巴,等.激光超声透射波表征表面缺陷深度的仿真研究[J].中北大学学报(自然科学版),2017,38(2):119-123,139.
    [10]Sohn Y,Krishnaswamy S.Interaction of a scanning laser-generated ultrasonic line source with a surfacebreaking flaw[J].The Journal of the Acoustical Society of America,2004,115(1):172-181.
    [11]Arias I,Achenbach J D.A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique[J]Wave Motion,2004,39(1):61-75.
    [12]Guan J F.Numerical study on depth gauging of surface breaking defects using laser-generated surface acoustic waves[J].Japanese Journal of Applied Physics,2011,50(3):032703.
    [13]Li K,Ma Z Y,Fu P,et al.Quantitative evaluation of surface crack depth with a scanning laser source based on particle swarm optimization-neural network[J].NDT and E International,2018,98:208-214.
    [14]Shen Z H,Xu B Q,Ni X W,et al.Numerical simulation of pulsed laser induced ultrasound in monolayer and double layer materials[J].Chinese Journal of Lasers,2004,31(10):1275-1280.沈中华,许伯强,倪晓武,等.单层和双层材料中的脉冲激光超声数值模拟[J].中国激光,2004,31(10):1275-1280.
    [15]Paul M,Haberer B,Arnold W.Materials characterization at high temperatures using laser ultrasound[J].Materials Science and Engineering:A,1993,168(1):87-92.
    [16]Touloukian Y S,Kirky R K,Taylor R E.Thermophysical properties of matter,thermal expansion:Metallic elements and alloys[M].New York:Plenum Press,1975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700