深部承压水上底抽巷围岩破坏特征及合理位置
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Surrounding rock's failure characteristic and rational location of floor gas drainage roadway above deep confined water
  • 作者:李永恩 ; 马念杰 ; 马骥 ; 张弘 ; 镐振
  • 英文作者:LI Yongen;MA Nianjie;MA Ji;ZHANG Hong;HAO Zhen;Faculty of Resource and Safety Engineering,China University of Mining & Technology (Beijing);Shenhua Guoneng Group Company;
  • 关键词:承压水 ; 底抽巷 ; 围岩破坏特征 ; 合理位置 ; 底板突水
  • 英文关键词:confined water;;floor gas drainage roadway;;floor water inrush;;failure characteristics of surrounding rock;;rational location
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)资源与安全工程学院;神华国能集团有限公司;
  • 出版日期:2018-09-15
  • 出版单位:煤炭学报
  • 年:2018
  • 期:v.43;No.288
  • 基金:国家自然科学基金资助项目(51234006,51704294)
  • 语种:中文;
  • 页:MTXB201809016
  • 页数:10
  • CN:09
  • ISSN:11-2190/TD
  • 分类号:129-138
摘要
针对赵固二矿区域瓦斯治理需开掘底抽巷与承压水上开掘底抽巷易引发底板突水之间的矛盾,通过承压水影响下的圆形巷道围岩塑性区边界方程,分析了底抽巷围岩塑性区的分布特征与底板突水危险性之间的关系;采用数值模拟研究了工作面开挖后的底板应力分布状态及底抽巷布置在不同位置时的围岩破坏特征及相应的突水危险性。结果表明:底抽巷围岩塑性区的非均匀分布会显著减小底板隔水层厚度,增加底板突水危险;工作面开挖后底板应力根据其双向应力比值大小及应力加卸载状态可分为4个区域且按对底板突水危险的影响程度可排序为:卸压高应力比值区>卸压应力比值稳定区>增压低应力比值区>原岩应力比值区。据此提出了赵固二矿底抽巷的合理位置为沿待采工作面法向布置,并在规划的煤柱中部下方的L9灰岩上部砂质泥岩层中沿底掘进。
        Aiming at the contradiction between the needs of driving floor gas drainage roadway at Zhaogu No. 2 coal mine to control gas and the risk of floor water inrush caused by driving the floor gas drainage roadway above the confined aquifers,by using the boundary equation of plastic zone in circular roadway surrounding rock under the influence of confined aquifers,the relationship between the distribution characteristics of the plastic zone of the surrounding rock and the risk of the floor water inrush is analyzed. By using the numerical simulation,two facts are studied: the stress distribution in the floor after working face excavation,the failure characteristics of surrounding rock and the corresponding risk of floor water inrush when the floor gas drainage roadway is arranged at different positions. The results show that the non-uniform distribution of plastic zone of the floor gas drainage roadway's surrounding rock will significantly reduce the thickness of the floor aquiclude and increase the risk of floor water inrush.After the working face excavated,the stress of the floor can be divided into four regions according to the ratio of the two-way stress and the stress loading and unloading state.According to the impact on the floor water inrush,the danger can be ranked as: high and unloading stress ratio area > stable and unloading stress ratio area > low and loading stress ratio area > original rock stress ratio area.In view of the above,the rational location of the floor gas drainage roadway in Zhagou No.2 coal mine should be arranged along the normal direction of the working face and driven under the middle of coal pillar and along the sandy mudstone layer's bottom which is above the L9 limestone.
引文
[1]刘天泉.“三下一上”采煤技术的现状及其展望[J].煤炭科学技术,1995,23(1):5-7.LIU Tianquan.Present situation and prospect of coal mining technology of under buildings,railways and water-bodies and above aquifer[J].Coal Science and Technology,1995,23(1):5-7.
    [2]施龙青,韩进.开采煤层底板“四带”划分理论与实践[J].中国矿业大学学报,2005,34(1):16-23.SHI Longqing,HAN Jin.Theory and practice of dividing coal mining area floor into four-zone[J].Journal of China University of Mining&Technology,2015,34(1):16-23.
    [3]王作宇.底板零位破坏带最大深度的分析计算[J].煤炭科学技术,1992,(2):2-6+60-61.WANG Zuoyu.Analysis and calculation of max depth of floor zero position failure zone[J].Coal Science and Technology,1992,(2):2-6,60-61.
    [4] ZHANG J.Investigations of water inrushes from aquifers under coal seams[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(3):350-360.
    [5]钱鸣高,缪协兴,黎良杰.采场底板岩层破断规律的理论研究[J].岩土工程学报,1995,17(6):56-61.QIAN Minggao,MIU Xiexing,LI Liangjie. Mechanism for the fracyure behaviours of main floor in longwall mining[J].Chinese Journal of Geotechnical Engineering,1995,17(6):56-61.
    [6] XU Jialin,QIAN Minggao.Study and application of mining-induced fracture distribution in green mining[J].Journal of China University of Mining and Technology,2004,32(2):141-144.
    [7]王经明.承压水沿煤层底板递进导升突水机理的模拟与观测[J].岩土工程学报,1999,21(5):546-549.WANG Jingming.In-situ measurement and physical analogue on water inrush from coal floor induced by progressive intrusion of artesian water into protective aquiclude[J]. Chinese Journal of Geotechnical Engineering,1999,21(5):546-549.
    [8]孟召平,高延法,卢爱红.矿井突水危险性评价理论与方法[M].北京:科学出版社,2011.
    [9]陈忠辉,胡正平,李辉,等.煤矿隐伏断层突水的断裂力学模型及力学判据[J].中国矿业大学学报,2011,40(5):673-677.CHEN Zhonghui,HU Zhengping,LI Hui,et al. Fracture mechanical model and criteria of insidious fault water inrush in coal mines[J]. Journal of China University of Mining&Technology,2011,40(5):673-677
    [10]宋振骐,郝建,汤建泉,等.断层突水预测控制理论研究[J].煤炭学报,2013,38(9):1511-1515.SONG Zhenqi,HAO Jian,TANG Jianquan,et al.Study on water inrush from fault’s prevention and control theory[J].Journal of China Coal Society,2013,38(9):1511-1515.
    [11]孙建,王连国.基于微震信号突变分析的底板断层突水预测[J].煤炭学报,2013,38(3):1404-1410.SUN Jian,WANG Lianguo. Floor fault water-inrush prediction based on catastrophe analysis of micro-seismic signals[J]. Journal of China Coal Society,2013,38(3):1404-1410.
    [12]卜万奎,徐慧.某矿区带压开采逆断层活化及突水性分析[J].煤炭学报,2011,36(7):1177-1183.BU Wankui,XU Hui.Analysis on reverse fault activation and water inrush possibility for coal mining above confined aquifer in a mining area[J].Journal of China Coal Society,2011,36(7):1177-1183.
    [13]尹尚先,武强.煤层底板陷落柱突水模拟及机理分析[J].岩石力学与工程学报,2004,23(15):2551-2556.YIN Shangxian,WU Qiang. Simulation and mechanism analysis of water inrush from karstic collapse columns in coal floor[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(15):2551-2556.
    [14]尹尚先,武强,王尚旭.北方岩溶陷落柱的充水特征及水文地质模型[J].岩石力学与工程学报,2005,24(1):77-82.YIN Shangxian,WU Qiang,WANG Shangxu. Water-bearing characteristics and hydro-geological models of karstic collapse columns in north China[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(1):77-82.
    [15]张均锋,张华玲,孟达,等.采动影响下强充水型隐伏岩溶陷落柱围岩变形与渗流场数值模拟[J].岩石力学与工程学报,2009,28(S1):2824-2829.ZHANG Junfeng,ZHANG Hualing,MENG Da,et al. Numerical simulation of rock deformation and seepage field with a fullywater karstic collapse column under mining influence[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(S1):2824-2829.
    [16]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [17]王连国,韩猛,王占盛,等.采场底板应力分布与破坏规律研究[J].采矿与安全工程学报,2013,30(3):317-322.WANG Lianguo,HAN Meng,WANG Zhansheng,et al.Stress distribution and damage law of mining floor[J]. Journal of Mining&Safety Engineering,2013,30(3):317-322.
    [18]陆士良,姜耀东,孙永联.巷道与上部煤层间垂距Z的选择[J].中国矿业大学学报,1993(1):4-10.LU Shiliang,JIANG Yaodong,SUN Yonglian.The selection of vertical distance Z between roadway and its upper coal seam[J].Journal of China University of Mining&Technology,1993(1):4-10.
    [19]陆士良,孙永联,姜耀东.巷道与上部煤柱边缘间水平距离X的选择[J].中国矿业大学学报,1993(2):4-10.LU Shiliang,SUN Yonglian,JIANG Yaodong. Selection of horizontal distance X between roadway and the edge of its upper pillar[J].Journal of China University of Mining&Technology,1993(2):4-10.
    [20]张百胜,杨双锁,康立勋,等.极近距离煤层回采巷道合理位置确定方法探讨[J].岩石力学与工程学报,2008,27(1):97-101.ZHANG Baisheng,YANG Shuangsuo,KANG Lixun,et al. Discussion on method for determining reasonable position of roadway for ultra-close multi-seam[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(1):97-101.
    [21]娄培杰.动压影响底板巷道大变形力学机理及围岩控制技术研究[D].徐州:中国矿业大学,2014.
    [22]张华磊.采场底板应力传播规律及其对底板巷道稳定性影响研究[D].中国矿业大学,2011.
    [23]赵志强.大变形回采巷道围岩变形破坏机理与控制方法研究[D].中国矿业大学(北京),2014.ZHAO Zhiqiang. Mechanism of surrounding rock deformation and failure and control method research in large deformation mining roadway[D]. Beijing:China University of Mining&Technology(Beijing),2014.
    [24]马念杰,李季,赵志强.圆形巷道围岩偏应力场及塑性区分布规律研究[J].中国矿业大学学报,2015,44(2):206-213.MA Nianjie,LI Ji,ZHAO Zhiqiang. Distribution of the deviatoric stress field and plastic zone in circular roadway surrounding rock[J].Journal of China University of Mining&Technology,2015,44(2):206-213.
    [25]王卫军,郭罡业,朱永建,等.高应力软岩巷道围岩塑性区恶性扩展过程及其控制[J].煤炭学报,2015,40(12):2747-2754.WANG Weijun,GUO Gangye,ZHU Yongjian,et al. Malignant development process of plastic zone and control technology of high stress and soft rock roadway[J]. Journal of China Coal Society,2015,40(12):2747-2754.
    [26]马念杰,赵希栋,赵志强,等.深部采动巷道顶板稳定性分析与控制[J].煤炭学报,2015,40(10):2287-2295.MA Nianjie,ZHAO Xidong,ZHAO Zhiqiang,et al.Stability analysis and control technology of mine roadway roof in deep mining[J].Journal of China Coal Society,2015,40(10):2287-2295.
    [27]李昂.带压开采下底板渗流与应力耦合破坏突水机理及其工程应用[D].西安:西安科技大学,2012.LI Ang. Water inrush mechanism on seepage and stress coupling damage of coal floor under water pressure and its engineering application[D].Xi’an:Xi’an University of Science and Technology,2012.
    [28]王章琼,晏鄂川,鲁功达,等.我国大陆地下水封洞库库址区地应力场分布规律统计分析[J].岩土力学,2015,35(S1):251-256.WANG Zhangqiong,YAN Echuan,LU Gongda,et al. Statistical analysis of in-situ stress field for underground water-sealed storage cavern in Chinese mainland[J]. Rock and Soil Mechanics,2015,35(S1):251-256.
    [29]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010:42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700