巯基棉分离富集-偶氮氯膦Ⅲ-TPB-共振光散射测定垃圾渗滤液中的Zn(Ⅱ)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of Trace Zinc(Ⅱ) in Landfill Leachate by Resonance Light Scattering Method with Azo Chlorination Ⅲ-Hexadecylpyridinium Bromide after Sulfhydryl Cotton Separation and Preconcentraction
  • 作者:庞向东 ; 江虹 ; 何婷婷 ; 秦艾 ; 洪歆
  • 英文作者:PANG Xiangdong;JIANG Hong;HE Tingting;QIN Ai;HONG Xin;College of Chemistry and Chemical Engineering,Collaborative Innovation Centre for Green Development in Wuling Mountain Areas,Yangtze Normal University;
  • 关键词:分离富集 ; 偶氮氯膦Ⅲ ; 溴代十六烷基吡啶 ; Zn(Ⅱ) ; 共振散射
  • 英文关键词:separation and preconcentration;;azo chlorination Ⅲ;;hexadecylpyridinium bromide;;zinc(Ⅱ);;resonance scattering
  • 中文刊名:IAOB
  • 英文刊名:Environmental Monitoring in China
  • 机构:长江师范学院化学化工学院长江师范学院武陵山片区绿色发展协同创新中心;
  • 出版日期:2018-01-16 16:57
  • 出版单位:中国环境监测
  • 年:2018
  • 期:v.34;No.191
  • 基金:重庆市教委科技基金资助项目(KJ1401226);; 长江师范学院科技基金资助项目(2016CXX088)
  • 语种:中文;
  • 页:IAOB201801019
  • 页数:5
  • CN:01
  • ISSN:11-2861/X
  • 分类号:132-136
摘要
建立了测定垃圾渗滤液中微量Zn(Ⅱ)的巯基棉分离富集-偶氮氯膦Ⅲ-溴代十六烷基吡啶(TPB)共振光散射新方法。在pH为3.1~4.6的Tris-盐酸缓冲介质及TPB存在下,Zn(Ⅱ)与偶氮氯膦Ⅲ-TPB结合生成三元缔合物,使共振光散射(RLS)显著增强并产生新的散射光谱,最大RLS散射峰位于378 nm处,体系的RLS增强程度(△IRLS)与0.008~0.20 mg/L范围内的Zn(Ⅱ)呈线性关系,定量限为0.010 mg/L。研究了共振光散射的光谱特征、适宜的反应条件及主要分析化学性质。方法用于垃圾填埋场渗滤液中Zn(Ⅱ)的测定,加标回收率为98.10%~102.7%,相对标准偏差为1.5%~1.8%。
        A new resonance light scattering method of azo chlorination Ⅲ-hexadecylpyridinium bromide(TPB) for quantifying zinc(Ⅱ) in landfill leachate after sulfhydryl cotton separation and preconcentration was developed.In an acidic Tris-Hydrochloric acid buffer medium of pH 3.1-4.6 and in the existence of hexadecylpyridinium bromide,zinc(Ⅱ) can be bound with azo chlorination Ⅲ-hexadecylpyridinium bromide to form a ternary complexes,which led to a distinctly enhanced resonance light scattering(RLS) of system and the appearance of a new RLS spectrum.The maximum resonance light scattering peak was located at 378 nm,the resonance light scattering enhance intensity(△IRLS) was directly proportional to the mass concentration of zinc(Ⅱ) in the range of 0.008 to 0.20 mg/L with the limit of quantitation being of 0.010 mg/L.The spectrum characteristics of resonance light scattering and optimum reaction conditions and the chief properties of analytical chemistry were studied.The method has been applied to the determination of trace zinc(Ⅱ) in landfill leachate with spiked recoveries and RSD found were in the ranges of 98.10%-102.7% and 1.5%-1.8% respectively.
引文
[1]王征帆.火焰原子吸收光谱法测定绿豆、黄豆中铜、锌的含量[J].应用化工,2012,41(7):1 261-1 262,1 267.WANG Zhengfan.Determination of Copper and Zinc in Mung Bean and Soybean by FAAS[J].Applied Chemical Industry,2012,41(7):1 261-1 262,1 267.
    [2]MAHMOUD M E,KENAWY I M M,HAFEZ MM A H,et al.Removal,Preconcentration and Determination of Trace Heavy Metal Ions in Water Samples by AAS Via Chemically Modified Silica Gel N-(1-carboxy-6-hydroxy)Benzylidenepropylamine Ion Exchanger[J].Desalination,2009,250(1):62-70.
    [3]徐鹏,王青柏,姜雅红.固体进样-石墨炉原子吸收光谱法测定土壤中重金属[J].分析试验室,2015,34(5):555-557.XU Peng,WANG Qingbai,JIANG Yahong.Direct Determination of Heavy Metals in Soil by Graphite Furnace Atomic Absorption Spectrometry with Solid Sampling[J].Chinese Journal of Analysis aboratory,2015,34(5):555-557.
    [4]薛慧,董宾.火焰原子吸收法测定煤渣和煤质活性炭中铁、钙、镁、锌、铅[J].化学分析计量,2014,23(4):27-29.XUE Hui,DONG Bin.Determination of Fe,Ca,Mg,Zn and Pb in Cinder and Activated Carbon by Flame Atomic Absorption Method[J].Chemical Analysis and Meterage,2014,23(4):27-29.
    [5]高云霞,张一陈,李秀平.分光光度法同时测定采矿废水中的Fe2+、Cu2+、Zn2+[J].工业水处理,2012,32(8):79-81.GAO Yunxia,ZHANG Yichen,LI Xiuping.Simultaneous Determination of Fe2+,Cu2+,Zn2+in Mining Wastewater by Spectrophotometry[J].Industrial Water Treatment,2012,32(8):79-81.
    [6]赵丹,敖特根巴雅尔,钟志梅,等.四苯基卟啉(TPP)分光光度法测定二价锌、镉离子的含量[J].内蒙古农业大学学报(自然科学版),2015,36(5):160-164.ZHAO Dan,Aotegenbayaer,ZHONG Zhimei,et al.Determination of Zinc and Cadmium Ions Using Tetraphenylporphyrin(TPP)Spectrophotometry[J].Journal of Inner Mongolia Agricultural University(Natural Science Edition),2015,36(5):160-164.
    [7]周杉杉,李人宇,马文慧.Zn2+-邻菲啰啉-达旦黄体系光度法测定食盐中锌[J].中国调味品,2012,37(1):69-73.ZHOU Shanshan,LI Renyu,MA Wenhui.Spectrophtometric Determination of Zinc in Salt with Zn2+-Phen-Titan Yellow System[J].China Condiment,2012,37(1):69-73.
    [8]李晓艳,许零.方波阳极溶出伏安法同时测定煤矸石和粉煤灰中的锌、镉、铅[J].环境化学,2015,34(11):2 039-2 045.LI Xaoyan,XU Ling.Simultaneous Determination of Zinc,Cadmium,and Lead in Coal Gangue and Fly Ash by Square Wave Anodic Stripping Voltammetry[J].Environmental Chemistry,2015,34(11):2 039-2 045.
    [9]LI J H,KUANG D Z,ZHANG F X,et al.Voltammetric Determination of Zn2+Based on the Multi-Walled Carbon Nanotubes-Nafion Modified Electrode[J].Journal of Hengyang Normal University,2009,30(6):77-80.
    [10]顾玲,刘彦平.氧化石墨烯修饰碳糊电极的方波溶出伏安法测定锌[J].化学研究与应用,2016,28(1):36-41.GU Ling,LIU Yanping.Graphite Oxide Modified Carbon Paste Electrode for Determination of Zinc by Square Wave Stripping Voltammetry[J].Chemical Research and Application,2016,28(1):36-41.
    [11]陈英杰,刘鹏飞.方波溶出伏安法同时测定水体中的重金属[J].山东化工,2015,44(2):56-58.CHEN Yingjie,Liu Pengfei.The Simultaneous Differmination of Heavy Mental in Water by Square Wave Stripping Voltammetry[J].Shandong Chemical Industry,2015,44(2):56-58.
    [12]李智芳,罗先熔,宋艳伟,等.贵州织金矿区地电化学法寻找隐伏铅锌矿的研究及找矿预测[J].桂林理工大学学报,2015,35(4):801-808.LI Zhifang,LUO Xianrong,SONG Yanwei,et al.Prediction and Prospecting for Hidden Lead-Zinc Deposit by Geoelectrochemical Method in Zhijin Mine of Guizhou[J].Journal of Guilin University of Technology,2015,35(4):801-808.
    [13]DOO Y L,NARINDER S,MIN J K,et al.Ratiometric Fluorescent Determination of Zn(II):A New Class of Tripodal Receptor Using Mixed Imine and Amide Linkages[J].Tetrahedron,2010,66(40):7 965-7 969.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700