磁场对高电压霍尔推力器性能影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Magnetic Field on Performance of Hall Effect Thruster under High Discharge Voltage
  • 作者:程佳兵 ; 康小录 ; 杭观荣 ; 王宣
  • 英文作者:CHENG Jia-bing;KANG Xiao-lu;HANG Guan-rong;WANG Xuan;Shanghai Institute of Space Propulsion;Shanghai Engineering Research Center of Space Engine;
  • 关键词:霍尔推力器 ; 高电压 ; 磁场优化
  • 英文关键词:Hall effect thruster;;High voltage;;Magnetic field optimization
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:上海空间推进研究所;上海空间发动机工程技术研究中心;
  • 出版日期:2018-11-07 17:17
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.261
  • 语种:中文;
  • 页:TJJS201903029
  • 页数:7
  • CN:03
  • ISSN:11-1813/V
  • 分类号:240-246
摘要
为研究磁场构型、磁场强度对高电压霍尔推力器主要性能的影响机理,以HET-200推力器为对象,采用固定磁场构型和不固定磁场构型两种方案进行实验研究。结果表明,在不固定构型的情况下增强磁场,放电电流存在两个极小值,效率也存在相应的两个极大值;但当固定磁场构型时,则放电电流只有一个最小值,效率也只有一个最大值。以最优效率下的磁场构型为基准,获得了磁场与电压、磁场与流量的匹配关系分别为B_(r, max)∝V~(0.7),B_(r, max)∝m。
        Aiming at studying the influence mechanisms of magnetic field configuration and intensity on the main performance of HETs under high voltage condition, this paper takes HET-200 thruster as an example to implement both fixed and unfixed magnetic field configuration methods to conduct the experimental research. The results indicate that for the unfixed magnetitic field configuration method, two local minimum discharge current values are acquired with the enhancement of magnetic field, and there are also two local maximum values of effiiency obtained correspondingly. Meanwhile, when the magnetic field configuration is fixed, the discharge current has only one minimum value and also only one maximum efficiency. Finally, based on the optimized magnetic field configuration, the matching relationship between magnetic field and discharge voltage, as well as magnetic field and anode flow rate are concluded as: B_(r,max)∝V~(0.7) and B_(r,max) ∝m.
引文
[1]David Manzella,David Jacobson,Robert Jankovsky.High Voltage SPT Performance[R].AIAA 2001-3774.
    [2]Popov G,Kim V,Kozlov V,et al.Investigation of the Possibility to Create the Stationary Plasma Thrusters(SPT)with High Specific Impulse[C].Capetown:62nd International Astronautical Congress,2011.
    [3]康小录,杭观荣,朱智春.霍尔电推进技术的发展与应用[J].火箭推进,2017,43(1):8-17.
    [4]王真容.变电压下霍尔推力器放电特性的研究[D].哈尔滨:哈尔滨工业大学,2012.
    [5]丁永杰.稳态等离子体推力器模化设计方法研究[D].哈尔滨:哈尔滨工业大学,2008.
    [6]于达仁,刘辉,丁永杰,等.空间电推进原理[M].哈尔滨:哈尔滨工业大学出版社,2014.
    [7]张志远,严立,王平阳,等.霍尔推力器放电室壁面溅射产额研究[J].推进技术,2015,36(3):476-480.(ZHANG Zhi-yuan,YAN Li,WANG Ping-yang,et al.Study on Sputtering Yield of Hall Thruster Discharge Chamber Wall[J].Journal of Propulsion Technology,2015,36(3):476-480.)
    [8]田杨,张志远,王平阳,等.基于混合方法的霍尔推力器寿命预估及参数影响分析[J].推进技术,2013,34(7):1002-1008.(TIAN Yang,ZHANG Zhiyuan,WANG Ping-yang,et al.Hall Thruster Lifetime Prediction and Operational Parameter Analysis Based on Hybrid-Method[J].Journal of Propulsion Technology,2013,34(7):1002-1008.)
    [9]Hofer R R.Development and Characterization of High Efficiency,High Specific Impulse Xenon Hall Thrusters[D].Michigan:University of Michigan,2004.
    [10]丁永杰,扈延林,颜世林,等.聚焦磁场及发散磁场对霍尔推力器壁面侵蚀的影响研究[J].推进技术,2015,36(5):795-800.(DIGN Yong-jie,HU Yanlin,YAN Shi-lin,et al.Effects of Focusing and Diverging Magnetic Field Topology on Hall Thruster Channel Wall Erosion[J].Journal of Propulsion Technology,2015,36(5):795-800.)
    [11]Raitses Y,Smirnov A,Staack D,et al.Measurements of Secondary Electron Emission Effects in the Hall Thruster Discharge[J].Physics of Plasmas,2006,13(1):423-430.
    [12]Barpiev A,Lazurenko A,Vial V,et al.Investigation of SPT Operation under High Discharge Voltages[R].IEPC-2003-211.
    [13]Kim V.Main Physical Features and Processes Determining the Performance of Stationary Plasma Thrusters[J].Journal of Propulsion and Power,1998,14(5):736-743.
    [14]Ahedo E,Escobar D.Influence of Design and Operation Parameters on Hall Thruster Performances[J].Journal of Applied Physics,2004,96(2):983-992.
    [15]刘辉.霍尔推力器电子运动行为的数值模拟[D].哈尔滨:哈尔滨工业大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700