磨削弧区高阶函数热源分布模型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Heat Source Distribution Model of High-order Function in Grinding Arc Area
  • 作者:何玉辉 ; 徐彦斌 ; 唐进元 ; 赵波
  • 英文作者:HE Yuhui;XU Yanbin;TANG Jinyuan;ZHAO Bo;State Key Laboratory of High Performance Complex Manufacturing,Central South University;School of Mechanical and Power Engineering, Henan Polytechnic University;
  • 关键词:磨削弧区 ; 热源分布 ; 温度场 ; 五阶热源
  • 英文关键词:grinding arc area;;heat source distribution;;temperature field;;fifth-order heat source model
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:中南大学高性能复杂制造国家重点实验室;河南理工大学机械与动力工程学院;
  • 出版日期:2019-01-25 15:48
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家重点研发计划(2017YFB1300702);; 国家自然科学基金重点(51535012,U1604255);; 湖南省重点研发计划(2016JC2001)资助项目
  • 语种:中文;
  • 页:JXXB201907028
  • 页数:8
  • CN:07
  • ISSN:11-2187/TH
  • 分类号:215-222
摘要
假设磨粒形状为球形,其粒径和突出高度服从瑞利分布,将磨粒接触半径表达式应用泰勒公式展开,建立磨削弧区高阶函数曲线热源模型。通过对比分析三至六阶函数热源模型的拟合误差,发现当函数阶数达到五阶后,其误差值小于2.5%且下降程度趋于平缓,故提出一种新型五阶热源模型。将新建的五阶热源模型与传统的矩形、三角形热源应用于磨削温度场仿真,并与热电偶测量结果进行对比分析,结果表明:五阶函数曲线热源相对于三角形热源和矩形热源而言,不论是整体符合程度、磨削弧区最高温度位置,还是实测结果应有的滞后性,其结果都更接近实际情况,从而验证了高阶函数曲线热源模型的正确性和优越性。
        It is assumed that the shape of the abrasive grains is spherical, its particle size and height are obeyed Rayleigh distribution, and the abrasive grain contact radius expression is extended by Taylor formula to establish the high-order function curve heat source model of grinding arc region. By comparing and analyzing the fitting error of the third-order function heat source to the sixth-order function heat source model, it is found that when the order of function reaches fifth-order, the error is less than 2.5% and the decreasing degree tends to be gentle. Therefore, a new fifth-order heat source model is proposed. It is found that when the function order reaches the fifth-order, the error value is very small and the degree of decline tends to be gentle, so a new fifth-order heat source model. The new fifth-order heat source model is compared with the traditional rectangular and triangular heat source in the grinding temperature field simulation. The results show that the fifth-order function curve heat source is relative to triangle and rectangular heat sources, regardless of the overall consistency, the highest temperature position of the grinding arc region, or the lag of the measured results. The results are closer to the actual situation, which verifies the correctness and superiority of the high-order function curve heat source model.
引文
[1]黄新春,张定华,姚倡锋,等.超高强度钢AerMetl00磨削烧伤研究[J].机械工程学报,2015,5l(9):184-190.HUANG Xinchun,ZHANG Dinghua,YAO Changfeng,et al.Research on the grinding bum of the ultrahigh strength steel Aer Metl00[J].Journal of Mechanical Engineering,2015,51(9):184-190.
    [2]DAI C,DING W,XU J,et al.Effects of undeformed chip thickness on grinding temperature and bum-out in high-efficiency deep grinding of Inconel718superalloys[J].International Joumal of Advanced Manufacturing Technology,2017,89(4):184l-1852.
    [3]MAMALIS A G,KUNDRáK J,MANOLAKOS D E,et al.Effect of the workpiece material on the heat affected zones during grinding:A numerical simulation[J].International Journal of Advanced Manufacturing Technology,2012,22(11-12):761-767.
    [4]黄迪.金属切削区域温度场建模研究[D].武汉:华中科技大学,2014.HUANG Di.Modeling of temperature field in metal cutting region[D].Wuhan:Huazhong University of Science and Technology,2014.
    [5]阮宏慧,张大卫.热源形貌对超精密磨削热模型影响的研究[J].机械设计,2009,26(2):32-35.RUAN Honghui,ZHANG Dawei.Study on the influence of heat source morphology on ultra-precision grinding heat model[J].Mechanical Design,2009,26(2):32-35.
    [6]LIN B,CHEN S H,ZHANG H L,et al.Application of pitch arc moving heat source model in grinding temperature field of disk workpiece[J].Key Engineering Materials,2004,259(1):249-253.
    [7]WEN L K,LIN J F.General temperature rise solution for a moving plane heat source problem in surface grinding[J].International Journal of Advanced Manufacturing Technology,2006,31(3-4):268-277.
    [8]MALKIN S,GUO C.Thermal analysis of grinding[J].CIRP Annals-Manufacturing Technology,2007,56(2):760-782.
    [9]MAHDI M,ZHANG L.The finite element thermal analysis of grinding processes by ADINA[J].Computers&Structures,1995,56(2-3):313-320.
    [10]ROWE W B,BLACK S C E,MILLS B,et al.Experimental investigation of heat transfer in grinding[J].CIRP Annals-Manufacturing Technology,1995,44(1):329-332.
    [11]GUO C,WU Y,VARGHESEB V,et al.Temperatures and energy partition for grinding with vitrified CBN wheels[J].CIRP Annals-Manufacturing Technology,1999,48(1):247-250.
    [12]FANG C,XU X.Analysis of temperature distributions in surface grinding with intermittent wheels[J].International Journal of Advanced Manufacturing Technology,2014,71(1-4):23-31.
    [13]席辉.杯形砂轮平面磨削温度场的试验研究及其仿真[D].天津:天津大学,2007.XI Hui.Experimental study and simulation of surface grinding temperature field of cup-shaped grinding wheel[D].Tianjin:Tianjin University,2007.
    [14]周德旺.平面磨削温度场的研究[D].长沙:湖南大学,2008.ZHOU Dewang.Research on surface grinding temperature field[D].Changsha:Hunan University,2008.
    [15]毛聪,周志雄,周德旺,等.平面磨削温度场三维数值仿真的研究[J].中国机械工程,2009,20(5):589-595.MAO Cong,ZHOU Zhixiong,ZHOU Dewang,et al.Study on 3D numerical simulation of surface grinding temperature field[J].China Mechanical Engineering,2009,20(5):589-595.
    [16]CHEN H F,TANG J Y.A model for prediction of surface roughness in ultrasonic-assisted grinding[J].International Journal of Advanced Manufacturing Technology,2015,77:643-651.
    [17]DARAFON A,WARKENTIN A,BAUER R.3D metal removal simulation to determine uncut chip thickness,contact length,and surface finish in grinding[J].International Journal of Advanced Manufacturing Technology,2013,66(9-12):1715-1724.
    [18]ROWE W B.Thermal analysis of high efficiency deep grinding[J].International Journal of Machine Tools&Manufacture,2001,41(1):1-19.
    [19]唐进元,周伟华,黄于林.轴向超声振动辅助磨削的磨削力建模[J].机械工程学报,2016,52(15):184-191.TANG Jinyuan,ZHOU Weihua,HUANG Yulin.Modeling on grinding force assisted with axial ultrasonic vibration[J].Journal of Mechanical Engineering,2016,52(15):184-191.
    [20]HE Yuhui,ZHOU Qun,ZHOU Jianjie,et al.Comprehensive modeling approach of axial ultrasonic vibration grinding force[J].Journal of Central South University,2016,23(3):562-569.
    [21]JU Y,FARRIS T N,CHANDRASEKAR S.Theoretical analysis of heat partition and temperatures in grinding[J].Zeitschrift FüChemie,1998,120(4):215-216.
    [22]ROWE W B,BLACK S C E,MILLS B,et al.Grinding temperatures and energy partitioning[J].Proceedings of the Royal Society A,1997,453(1960):1083-1104.
    [23]HADAD M,SADEGHI B.Thermal analysis of minimum quantity lubrication-MQL grinding process[J].International Journal of Machine Tools&Manufacture,2012,63(1):1-15.
    [24]马尔金.磨削技术理论与应用[M].沈阳:东北大学出版社,2002.MA Erjin.Theory and application of grinding technology[M].Shenyang:Northeastern University Press,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700