Si_3N_4结合SiC耐火陶瓷裂纹萌生细观数值分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microscopic Numerical Analysis of Crack Initiation in Si_3N_4 Bonded SiC Refractory Ceramics
  • 作者:袁虎 ; 杨自春 ; 赵爽 ; 孙文彩
  • 英文作者:YUAN Hu;YANG Zichun;ZHAO Shuang;SUN Wencai;Institute of High Temperature Structural Composite Materials for Naval Ship,Naval University of Engineering;
  • 关键词:耐火陶瓷 ; 细观演化 ; 受热损伤
  • 英文关键词:refractory ceramic;;mesoscopic evolution;;thermal damage
  • 中文刊名:CLKX
  • 英文刊名:Journal of Materials Science and Engineering
  • 机构:海军工程大学舰船高温结构复合材料研究室;海军工程大学动力工程学院;
  • 出版日期:2019-02-20
  • 出版单位:材料科学与工程学报
  • 年:2019
  • 期:v.37;No.177
  • 基金:国家自然科学基金资助项目(51509254);; 大学科研发展基金资助项目(20160135,425517K153)
  • 语种:中文;
  • 页:CLKX201901028
  • 页数:6
  • CN:01
  • ISSN:33-1307/T
  • 分类号:136+161-165
摘要
将复合球模型导入损伤力学模型中,模拟了材料在高温环境下受拉和受压损伤时的细观演化过程;推导了材料损伤参数与界面相参数之间的函数关系。研究表明,当外加载荷小于材料损伤临界值、介于材料损伤临界值和最大承载值之间时,不论材料承受拉载还是压载,都存在无损伤演化的线弹性阶段和微裂纹扩展区逐渐增大的损伤强化阶段;若应力达到最大承载值后仍继续增大,材料损伤将过渡到损伤局部化阶段,损伤局部化的连续也就是材料宏观裂纹萌生的开始。
        In order to investigate the thermal damage mechanism of Si_3N_4 bonded SiC refractory ceramics,the damage evolution of the materials under tension and pressure at high temperature was simulated on a micromechanical scale,which was based on a composite sphere model incorporated with the damage mechanics model.And the function relationship between the damage parameters and the interface parameters was deduced.The analyses suggest that there is a linear elastic phase without damage evolution when the load is less than the critical value;and a damage strengthening phase with increasing micro-crack expanding region when the load is higher than the critical and lower than the maximum.The above facts are true whether the material is under tension or pressure.If the load keeps increasing,the damage localization phase would occur,in which the damage development is the beginning of the macroscopic cracking of the material.The results provide references for preventing these materials from fatigue fracture at high temperature.
引文
[1]Shihua Nie,Cemal Basarm.A Micromechanical Model for Effective Elastic Properties of Particulate Composites with Imperfect Interfacial Bonds[J].International Journal of Solids and Structures,2005,42(14):4179~4191.
    [2]C.Vinet,P.Priou.Micromechanical Damage Model Taking Loading-induced Anisotropy into Account[J].Aerospace Science and Technology,1997,1(1):65~76.
    [3]甘荣飞,廉俊盛,姚博.脆性基复合材料破坏过程细观力学研究[J].江西建材,2016(1):10~11.
    [4]郑恒伟,彭向和,丁剑平,等.陶瓷颗粒增强复合材料细观力学模型[J].中国陶瓷,2016,52(7):39~42.
    [5]袁硕伟,杨自春.氮化硅结合碳化硅砖的微观结构模型及热冲击载荷下裂纹起始行为[J].耐火材料,2015,49(12):426~431.
    [6]曹卉,芮执元,罗德春,等.加载速率对单晶γ-TiAl裂纹扩展影响的分子动力学模拟[J].材料科学与工程学报,2016,34(2):321~325.
    [7]邵彬彬,徐颖,等.C/SiC复合材料的动态力学性能及微观结构分析[J].材料科学与工程学报,2016,34(4):603~606.
    [8]杨康,王志刚,刘昌明.基于细观力学的耐火材料单轴拉伸微损伤模型研究[J].耐火材料,2014,48(10):352~355.
    [9]赵嘉煜,杨自春,曹跃云,等.增压锅炉耐火砖疲劳裂纹扩展特性研究[J].耐火材料,2015,49(4):117~119.
    [10]Zvi.Hashin.The Elastic Moduli of Heterogeneous Materials[J].Journal of Applied Mechanics,1962,29(1):143~150.
    [11]J.W.Ju,T.M.Chen,Micromechanics and Effective Moduli of Elastic Composites Containing Randomly Dispersed Ellipsoidal Inhomogeneities[J].Acta Mechanica,1994,103(1):103~121.
    [12]J.W.Ju,T.M.Chen.Effective Elastic Moduli of Two-phase Composites Containing Randomly Dispersed Spherical Inhomogeneities[J].Acta Mechanica,1994,103(1):123~144.
    [13]宋文章,杨自春,李昆锋,等.增压锅炉耐火砖衬结构的断裂失效分析[J].锅炉制造,2014(7):14~19.
    [14]陈小祥.基于细观力学方法的耐火材料损伤模型研究[D].武汉:武汉科技大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700