NEMS外场驱动微电机研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Research of NEMS Field-Driven Micromotors
  • 作者:曹富林 ; 许立忠
  • 英文作者:CAO Fu-lin;XU Li-zhong;Yanshan University;
  • 关键词:微纳米电机 ; 纳机电系统 ; 外场驱动 ; 微电机 ; 发展趋势 ; 应用前景
  • 英文关键词:micro nano motor;;nano electro mechanical system(NEMS);;external field driven;;micro motor;;development trend;;application prospect
  • 中文刊名:WTDJ
  • 英文刊名:Small & Special Electrical Machines
  • 机构:燕山大学;
  • 出版日期:2019-03-22 10:20
  • 出版单位:微特电机
  • 年:2019
  • 期:v.47;No.338
  • 语种:中文;
  • 页:WTDJ201903019
  • 页数:5
  • CN:03
  • ISSN:31-1428/TM
  • 分类号:82-86
摘要
按照外场驱动微电机的驱动机制进行分类,简要介绍了各类微电机的制造工艺及应用前景,综述了各类微电机的研究与应用现状。指出了当前外场驱动微电机领域的研究热点,分析了微电机在实际应用中存在的困难。展望了外场驱动微电机未来的发展趋势及应用前景。
        According to the drive mechanism of the micromotor driven by the external field,the classification and the manufacturing process and application prospect of various micromotors were briefly introduced. The research and application status of various micromotors were summarized. The current research hotspots of micro-motor driven by the external field were pointed out,and the difficulties in the practical application of the micro-motor were analyzed. The future development trend and application prospects of field-driven micromotors were forecasted.
引文
[1]FAN L S,TAI Y C,MULLLER R S.Integrated movable micromechanical structures for sensors and actuators[J].IEEE Transactions on Electronical Devices,1988,35(6):724-730.
    [2]FELDMANN M,BUTTGENBACH S. Linear variable reluctance(VR)micro motors with compensated attraction force:concept,simulation,fabrication and test[J].IEEE Transactions on Magnetics,2007,43(6):2567-2569.
    [3]WALDSCHIK A,FELDMANN M,SEIDEMANN V,et al.Development and fabrication of elect-romagnetic microactuators[M]//Design and Manufacturing of Active Microsystems. Springer Berlin Heidelberg,2011:207-224.
    [4]GAO W,SATTAYASAMITSATHIT S,MANESH K M,et al.Magnetically powered flexible metal nanowire motors[J].Journal of the American Chemical Society,2010,132(41):14403-14407.
    [5]BERG H C,ANDERSON R A. Bacteria swim by rotating their flagellar filaments[J].Nature,1973,245(5425):380-382.
    [6]LI J,SATTAYASAMITSATHIT S,DONG R,et al.Template electrosynthesis of tailored-made helical nanoswimmers[J].Nanoscale,2014,6(16):9415-9420.
    [7]GAO W,FENG X,PEI A,et al.Bioinspired helical microswimmers based on vascular plants[J].Nano Letters,2014,14(1):305.
    [8]YAN X,ZHOU Q,YU J,et al.Magnetite nanostructured porous hollow helical microswimmers for targeted delivery[J]. Advanced Functional Materials,2015,25(33):5333-5342.
    [9]SONG Y,CHEN S.Janus nanoparticles:preparation,characterization,and applications[J]. Chemistry-An Asian Journal,2014,9(2):418-430.
    [10]LEE K,YI Y,YU Y. Remote Control of T cell activation using magnetic janus particles[J]. Angewandte Chemie,2016,55(26):73-84.
    [11]许太林.超声控制与驱动微纳米马达[D].北京:北京科技大学,2017.
    [12]WANG W,CASTRO L A,HOYOS M,et al.Autonomous motion of metallic microrods propelled by ultrasound[J].Acs Nano,2012,6(7):6122-6132.
    [13]GARCIAGRADILLA V,SATTAYASAMITSATHIT S,SOTO F,et al.Ultrasound-propelled nanoporous gold wire for efficient drug loading and release[J].Small,2014,10(20):41-54.
    [14]XU T,SOTO F,GAO W,et al.Ultrasound-modulated bubble propulsion of chemically powered microengines[J]. Journal of the American Chemical Society,2014,136(24):8552-8556.
    [15]PAPADAKIS S J,HALL A R,WILLIAMS P A,et al.Resonant oscillators with carbon-nanotube torsion springs[J]. Physical Review Letters,2004,93(14):146101.
    [16]MEYER J C,PAILLET M,ROTH S. Single-molecule torsional pendulum[J].Science,2005,309(5740):1539-1541.
    [17]KIM K,XU X,GUO J,et al.Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks[J].Nature Communications,2014,5(5):3632.
    [18]SHARMA R,VELEV O D.Remote steering of self‐propelling microcircuits by modulated electric field[J].Advanced Functional Materials,2015,25(34):5512-5519.
    [19]ASHKIN A,DZIEDZIC J M,BJORKHOLM J E,et al.Observation of a single-beam gradient force optical trap for dielectric particles[J].Optics Letters,1986,11(5):288.
    [20]BERTHELOT J,ACIMOVIC S S,JUAN M L,et al.Three-dimensional manipulation with scanning near-field optical nanotweezers[J].Nature Nanotechnology,2014,9(4):295.
    [21]PAUZAUSKIE P J,RADENOVIC A,TREPAGNIER E,et al.Optical trapping and integration of semiconductor nanowire assemblies in water[J].Nature Materials,2006,5(2):97-101.
    [22]HASHEMI S M,MEIJERING A E,ROOS W H,et al.Recent advances in biological single-molecule applications of optical tweezers and fluorescence microscopy[J]. Methods Enzymol,2017(582):85-119.
    [23]TI C,THANH M T H,SHEN Y,et al.Fiber optical tweezers for applying and measuring forces in a 3D solid compartment[M]//Selected Topics on Optical Fiber Technologies and Applications,2018.
    [24]SHAO L,YANG Z J,ANDREN D,et al.Gold nanorod rotary motors driven by resonant light scattering[J]. Acs Nano,2015,9(12):12542-12551.
    [25]ZHANG Y,WANG J,SHEN J,et al.Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface.[J].Nano Letters,2014,14(11):6430-6436.
    [26]JOHANSEN P L,FENAROLI F,EVENSEN L,et al. Optical micromanipulation of nanoparticles and cells inside living zebrafish[J].Nature Communications,2016(7):10974.
    [27]JIANG H R,YOSHINAGA N,SANO M.Active motion of a Janus particle by self-thermophoresis in a defocused laser beam[J].Physical Review Letters,2010,105(26):268-302.
    [28]MAGGI C,SAGLIMBENI F,DIPALO M,et al.Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects[J].Nature Communications,2015(6):7855.
    [29]MOU F,LI Y,CHEN C,et al. Single-Component Ti O2 tubular microengines with motion controlled by light-induced bubbles.[J].Small,2015,11(21):2564.
    [30]吴志光.自驱动合成微纳米马达的仿生设计及其生物医学应用[D].哈尔滨:哈尔滨工业大学,2015.
    [31]DONG R,ZHANG Q,GAO W,et al. Highly efficient light-driven Ti O2-Au janus micromotors[J].Acs Nano,2015,10(1):839.
    [32]MCLEOD E,ARNOLD C B.Subwavelength direct-write nanopatterning using optically trapped microspheres[J]. Nature Nanotechnology,2008,3(7):413-419.
    [33]VAN N K,MINTEER S D. DNA-functionalized Pt nanoparticles as catalysts for chemically powered micromotors:toward signalon motion-based DNA biosensor[J]. Chemical Communications,2015,51(23):4782-4785.
    [34]WU Z,LIN X,ZOU X,et al.Biodegradable protein-based rockets for drug transportation and light-triggered release[J]. Acs Applied Materials&Interfaces,2015,7(1):250-254.
    [35]WANG W,DUAN W,ZHANG Z,et al. A tale of two forces:simultaneous chemical and acoustic propulsion of bimetallic micromotors[J].Chemical Communications,2015,51(6):1020-1022.
    [36]KAGAN D,BENCHIMOL M J,CLAUSSEN J C,et al. Acoustic droplet vaporization and propulsion of perfluorocarbon‐loaded microbullets for targeted tissue penetration and deformation[J].Angewandte Chemie,2012,51(30):7519.
    [37]SRIVASTAVA S K,GUIX M,SCHMIDT O G.Wastewater mediated activation of micromotors for efficient water cleaning[J].Nano Letters,2015,16(1):817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700