外源GA_3和PBZ对桃枝条生长及其GA相关基因表达的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of GA_3 and PBZ on Shoot Growth and Expression of GA-related Genes in Peach
  • 作者:谭彬 ; 王婷 ; 郝鹏博 ; 郑先波 ; 程钧 ; 王伟 ; 冯建灿
  • 英文作者:TAN Bin;WANG Ting;HAO Pengbo;ZHENG Xianbo;CHENG Jun;WANG Wei;FENG Jiancan;College of Horticulture, Henan Agricultural University;Henan Key Laboratory of Fruit and Cucurbit Biology;
  • 关键词: ; 赤霉素 ; 多效唑 ; 新梢长度 ; 逆转处理 ; 基因表达
  • 英文关键词:Peach;;Gibberellin;;Paclobutrazol;;The length of the shoot;;Reverse treatment;;Gene expression
  • 中文刊名:HBNB
  • 英文刊名:Acta Agriculturae Boreali-Sinica
  • 机构:河南农业大学园艺学院;河南省果树瓜类生物学重点实验室;
  • 出版日期:2019-04-28
  • 出版单位:华北农学报
  • 年:2019
  • 期:v.34
  • 基金:河南省重大科技专项(151100110900);; 河南省现代农业产业技术体系建设专项资金(S2014-11-G02);; 河南省科技攻关计划项目(172102410049);; 河南省高等学校重点科研项目(17A210001)
  • 语种:中文;
  • 页:HBNB201902006
  • 页数:10
  • CN:02
  • ISSN:13-1101/S
  • 分类号:29-38
摘要
为探究外源GA_3和PBZ处理对黄水蜜桃新梢生长及赤霉素合成代谢和信号转导途径相关基因表达的影响。对1年生黄水蜜桃枝条进行外源GA_3和PBZ喷施处理,测定新梢生长量,并利用qRT-PCR对GA合成代谢和信号传导途径中8个相关基因的表达量进行测定。结果表明:外源GA_3处理后新梢净生长量在处理8 d时显著高于对照,GA合成代谢相关基因KO和GA3-ox的表达量呈现出处理前期先升高后降低,处理后期逐渐升高的趋势,而GA信号转导相关基因DELLA、GID1c、SLY1的表达量呈现出在处理前期受抑制,后期迅速升高的趋势,且在处理后14 d时表达量达到峰值;外源PBZ处理后新梢净生长量在多个时期显著低于对照,并在处理后17 d时达极显著水平,GA合成代谢相关基因KO、GA20-ox、GA2-ox的表达量在整个处理过程中呈现出先逐渐升高随后降低的趋势,而GA3-ox基因在处理后整个时期近乎不表达,GA信号转导相关基因DELLA、GID1c、SLY1、ERF11的表达量在整个处理过程中均略低于对照,推测PBZ处理在转录水平上通过抑制活性GA的合成进而影响GA信号转导途径相关基因的表达来调节植物生长;外源GA_3逆转处理能显著解除PBZ对植物生长的抑制作用,且信号转导相关基因GID1c的表达量呈现出先升高后降低的趋势,DELLA基因的表达呈现出大多时期被抑制的情况。
        To investigate the effects of exogenous GA_3 and PBZ treatments on the growth of shoots and the expression of genes related to gibberellin biosynthesis and gibberellin signal transduction pathway in Huangshuimi, the annual shoots of Huangshuimi were treated with exogenous GA_3 and PBZ. The growth of shoots was measured and the expression levels of eight GA-related genes were determined by qRT-PCR. The results showed that the net length of shoots at 8 d was significantly higher in GA_3 treatment than in CK. The expressions of KO and GA3-ox showed a trend of firstly increasing and then decreasing in the early stage after treatment, while gradually rising in the later stages. The expression of DELLA, GID1 c and SLY1 genes related to GA signal transduction was inhibited at the early stage and then rapidly increased in the late growth period after treatment. And the expression of the three genes was up to maximum in 14 d after treatment. For the PBZ treatment, the net length of shoots was lower than the CK at many stages, and reached to a significant level at 17 d after treatment. The expression of genes related to gibberellin biosynthesis KO, GA20-ox and GA2-ox showed the trend of increasing gradually and then decreased. While GA3-ox showed almost no expression in whole treatment period. The expression of DELLA, GID1 c, SLY1 and ERF11 related to gibberellin signal transduction pathway were slightly lower than the CK during the whole process. It was speculated that the exogenous PBZ might regulate the plant growth at the transcriptional level by inhibiting the synthesis of active gibberellin and further affecting the expression of genes involved in the gibberellin signal transduction pathway. Meanwhile, the reverse treatment of GA_3 could significantly abolish the inhibitory effect of PBZ on plant growth, and the expression of GID1 c gene involved in gibberellin signal transduction pathway increased firstly and then decreased under GA_3 treatment, while the expression of DELLA gene appeared to be inhibited in most of the time.
引文
[1] 王志强,牛良,崔国朝,鲁振华,曾文芳.我国桃栽培模式现状与发展建议[J].果农之友,2015(9):3-4.doi:10.3969/j.issn.1671-7759.2015.09.001.Wang Z Q,Niu L,Cui G Z,Lu Z H,Zeng W F.Present situation and development suggestion of peach cultivation model in China[J].Fruit Growers′ Friend,2015(9):3-4.
    [2] Lammerts W E.The breeding of ornamental edible peaches for mild climates.i.inheritance of tree and flower characters[J].American Journal of Botany,1945,32(2):53-61.doi:10.2307/2437110.
    [3] Scorza R.Characterization of four distinct peach tree growth types[J].Journal of the American Society for Horticultural Science,1984,109(4):455-457.
    [4] Moore J N,Rom R C,Brown S A,Klingaman G L.′Bonfire′ dwarf peach,′Leprechaun′ dwarf nectarine,and ′Crimson Cascade′ and ′Pink Cascade′ weeping peaches[J].Hortscience,1993,28(8):854.
    [5] 宗学普,张贵荣,王志强,刘淑娥.矮化型油桃新品种——矮丽红[J].落叶果树,1997(2):26.doi:10.13855/j.cnki.lygs.1997.02.021.Zong X P,Zhang G R,Wang Z Q,Liu S E.A new dwarf nectarine variety-Alihong[J].Deciduous Fruits,1997(2):26.
    [6] 刘伟,张安宁,李桂祥,董晓民,陶吉寒.山东省桃生产成本与效益分析[J].中国农学通报,2016,32(1):88-91.doi:10.11924/j.issn.1000-6850.casb15060047.Liu W,Zhang A N,Li G X,Dong X M,Tao J H.Production cost and benefit analysis of peach in Shandong province[J].Chinese Agricultural Science Bulletin,2016,32(1):88-91.
    [7] 刘芳,袁华招,沈欣杰,廖雄,李天红.外源GA3和PP333对甜樱桃新梢生长及赤霉素代谢关键基因表达的影响[J].核农学报,2013,27(3):272-278.Liu F,Yuan H S,Shen X J,Liao X,Li T H.Effects of GA3 And PP333 on shoot growth and gene expression of gibberellins metabolism in Prunus avium[J].Journal of Nuclear Agricultural Sciences,2013,27(3):272-278.
    [8] Sugavanam B.Diastereoisomers and enantiomers of paclobutrazol:Their preparation and biological activity[J].Pesticide Science,2010,15(3):296-302.doi:10.1002/ps.2780150312.
    [9] Itoh H,Tatsumi T,Sakamoto T,Otomo K,Toyomasu T,Kitano H,Ashikari M,Ichihara S.A rice semi-dwarf gene,Tan-Ginbozu (D35),encodes the gibberellin biosynthesis enzyme,ent-kaurene oxidase[J].Plant Molecular Biology,2004,54(4):533-547.doi:10.1023/b:plan.0000038261.21060.47.
    [10] Spielmeyer W,Ellis M H,Chandler P M.Semidwarf (sd-1),"green revolution" rice,contains a defective gibberellin 20-oxidase gene[J].Proceedings of the National Academy of Sciences,2002,99(13):9043-9048.doi:10.1073/pnas.132266399.
    [11] Ayele B T,Magome H,Lee S,Shin K,Kamyia Y,Soh M S,Yamaguchi S.GA-sensitive dwarf1-1D,(gsd1-1D) defines a new mutation that controls endogenous GA levels in Arabidopsis[J].Journal of Plant Growth Regulation,2014,33(2):340-354.doi:10.1007/s00344-013-9385-x.
    [12] Xu Y L,Li L,Wu K,Peeters A J,Gage D A,Zeevart J A.The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase:Molecular cloning and functional expression[J].Proceedings of the National Academy of Sciences of the United States of America,1995,92(14):6640-6644.doi:10.1073/pnas.92.14.6640.
    [13] Carrera E,Jackson S D,Prat S.Feedback control and diurnal regulation of gibberellin 20-oxidase transcript levels in potato[J].Plant Physiology,1999,119(2):765-773.doi:10.1104/pp.119.2.765.
    [14] Reinecke D M,Wickramarathna A D,Ozga J A,Kurepin L V,Jin A L,Good A G,Pharis R P.Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis,growth,and development in pea[J].Plant Physiology,2013,163(2):929-945.doi:10.2307/23598714.
    [15] Wuddineh W A,Mazarei M,Zhang J Y,Poovaiah C R,Mann D G J,Ziebell A,Sykes R W,Davis M F,Udvardi M K,Stewart C N.Identification and overexpression of gibberellin 2-oxidase (GA2ox) in switchgrass (Panicum virgatum L.) for improved plant architecture and reduced biomass recalcitrance[J].Plant Biotechnology Journal,2015,13(5):636-647.doi:10.1111/pbi.12287.
    [16] Ueguchi-Tanaka M,Ashikari M,Nakajima M,Itoh H,Katoh E,Kobayashi M,Chow T,Hsing Y C,Kitano H,Yamaguchi I,Matsuoka M.Gibberellin insensitive DWARF1 encodes a soluble receptor for gibberellin[J].Nature,2005,437(7059):693-698.doi:10.1038/nature04028.
    [17] Peng J,Carol P,Richards D E,King K E,Cowling R J,Murphy G P,Harberd N P.The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J].Genes & Development,1997,11(23):3194.doi:10.1101/gad.11.23.3194.
    [18] Mcginnis K M,Thomas S G,Soule J D,Strader L C,Zale J M,Sun T P,Steber C M.The Arabidopsis SLEEPY1 gene encodes a putative F-Box subunit of an SCF E3 ubiquitin ligase[J].Plant Cell,2003,15(5):1120-1130.doi:10.1105/tpc.010827.
    [19] Miller J,Gordon C.The regulation of proteasome degradation by multi-ubiquitin chain binding proteins[J].Febs Letters,2005,579(15):3224-3230.doi:10.1016/j.febslet.2005.03.042.
    [20] Dill A,Sun T.Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana[J].Genetics,2001,159(2):777-785.doi:10.1002/gene.1080.
    [21] Li H,Wang Y,Li X,Wang Z,Zhao Y,Wang M.A GA-insensitive dwarf mutant of Brassica napus L.correlated with mutation in pyrimidine box in the promoter of GID1[J].Molecular Biology Reports,2011,38(1):191.doi:10.1007/s11033-010-0094-2.
    [22] Kim S I,Park B S,Kim D Y,Yeu S Y,Song S I,Song J T,Seo H S.E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development[J].Biochemical Journal,2015,469(2):299-314.doi:10.1042/BJ20141302.
    [23] Zhou X,Zhang Z L,Park J,Tyler L,Yusuke J,Qiu K,Nam E A,Lumba S,Desveaux D,McCourt P,Kamiya Y,Sun T P.The ERF11 transcription factor promotes internode elongation by activating gibberellin biosynthesis and signaling[J].Plant Physiology,2016,171(4):2760.doi:10.1104/pp.16.00154.
    [24] Boss P K,Thomas M R.Association of dwarfism and floral induction with a grape ′green revolution′ mutation[J].Nature,2002,416(6883):847-850.doi:10.1038/416847a.
    [25] Zhu L H,Li X Y,Welander M.Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size[J].Plant Cell Reports,2008,27(2):289-296.doi:10.1007/s00299-007-0462-0.
    [26] Hollender C A,Hadiarto T,Srinivasan C,Scorza R,Dardick C.A brachytic dwarfism trait (dw) in peach trees is caused by a nonsense mutation within the gibberellic acid receptor PpeGID1c[J].New Phytologist,2016,210(1):227-239.doi:10.1111/nph.13772.
    [27] 郝鹏博,李敏,谭彬,郑先波,叶霞,李继东,冯建灿.31个桃品种(系)幼树对外源GA3和PBZ的敏感性分析[J].江西农业学报,2017,29(1):11-15.doi:10.19386/j.cnki.jxnyxb.2017.01.03.Hao P B,Li M,Tan B,Zheng X B,Ye X,Li J D,Feng J C.Sensitivity analysis of 31 peach variety (line) saplings to exogenous GA3 and paclobutrazol[J].Acta Agriculturae Jiangxi,2017,29(1):11-15.
    [28] 郝鹏博.外源赤霉素和多效唑对桃节间长度及赤霉素代谢基因表达影响[D].郑州:河南农业大学,2017.Hao P B.Effects of GA3 and PBZ on internode length and gene expression of gibberellins metabolism in peach (Prunus persica L.)[D].Zhengzhou:Henan Agricultural University,2017.
    [29] Steffens G L,Wang S Y.Biochemical and physiological alteration in apple trees caused by a gibberellin biosynthesis inhibitor,paclobutrazol [J].Acta Horticulturae,1986,179(179):433-442.doi:10.17660/ActaHortic.1986.179.68.
    [30] Bidadi H,Yamaguchi S,Asahina M,Satoh S.Effects of shoot-applied gibberellin/gibberellin-biosynthesis inhibitors on root growth and expression of gibberellin biosynthesis genes in Arabidopsis thaliana[J].Plant Root,2010,4:4-11.doi:10.3117/plantroot.4.4.
    [31] Murase K,Hirano Y,Sun T P,Hakoshima T.Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J].Nature,2008,456(7221):459-463.doi:10.1038/nature07519.
    [32] Harberd N P,Belfield E,Yasumura Y.The angiosperm Gibberellin-GID1-DELLA growth regulatory mechanism:How an "inhibitor of an inhibitor" enables flexible response to fluctuating environments[J].Plant Cell,2009,21(5):1328-1339.doi:10.1105/tpc.109.066969.
    [33] Kawaide H.Biochemical and molecular analyses of gibberellin biosynthesis in fungi[J].Journal of the Agricultural Chemical Society of Japan,2006,70(3):583-590.doi:10.1271/bbb.70.583.
    [34] 邱碧云.果树密植矮化剂——PP333[J].植物杂志,1987(5):29.Qiu B Y.A dwarfing agent for dense planting of fruit trees-PP333[J].Plants,1987(5):29.
    [35] 吕文涛,周玉珍,娄晓鸣,成海钟,陈艳.多效唑和矮壮素对盆栽朱顶红矮化的影响[J].湖北农业科学,2016(16):4214-4216.doi:10.14088/j.cnki.issn0439-8114.2016.16.036.Lü W T,Zhou Y Z,Lou X M,Cheng H D,Chen Y.Dwarfing effects of paclobutrazol and chlorocholine chloride on potted Hippeastrum vittatum[J].Hubei Agricultural Sciences,2016(16):4214-4216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700