Ca对铸态Mg-11Gd-3Y-0.5Zr合金显微组织和性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Ca on microstructure and poperties of as-cast Mg-11Gd-3Y-0.5Zr alloy
  • 作者:张帅 ; 李全安 ; 朱宏喜 ; 陈晓亚 ; 王颂博 ; 关海昆
  • 英文作者:ZHANG Shuai;LI Quan-an;ZHU Hong-xi;CHEN Xiao-ya;WANG Song-bo;GUAN Hai-kun;School of Materials Science and Engineering, Henan University of Science and Technology;Collaborative Innovation Center of Nonferrous Metals,Henan Province;School of Materials Science and Engineering, Xi'an University of Technology;
  • 关键词:Mg-Gd-Y-Zr合金 ; Ca ; 显微组织 ; 力学性能
  • 英文关键词:Mg-Gd-Y-Zr alloy;;Ca;;microstructure;;mechanical property
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:河南科技大学材料科学与工程学院;有色金属共性技术河南省协同创新中心;西安理工大学材料科学与工程学院;
  • 出版日期:2019-05-25
  • 出版单位:材料热处理学报
  • 年:2019
  • 期:v.40;No.227
  • 基金:国家自然科学基金(51571084,51171059)
  • 语种:中文;
  • 页:JSCL201905027
  • 页数:6
  • CN:05
  • ISSN:11-4545/TG
  • 分类号:42-47
摘要
采用光学显微镜、扫描电镜、X射线衍射仪、能谱仪、硬度计以及拉伸试验机,研究分析了Mg-11Gd-3Y-xCa-0.5Zr(x=0、0.2、0.8 mass%)合金的显微组织及力学性能。结果表明:铸态Mg-11Gd-3Y-0.5Zr合金由α-Mg基体以及大量处于晶界上的Mg_5Gd和Mg_(24)Y_5相组成,添加0.2 mass%Ca对合金相种类没有影响,而当添加0.8 mass%的Ca时,晶界处有新相Mg_2Ca的出现且晶粒显著细化。随着Ca元素含量的增加,合金的抗拉强度及硬度不断增加,但伸长率不断降低,当Ca含量为0.8 mass%时,抗拉强度和硬度达到217 MPa和92 HBW,与基体合金相比提高了12.43%和16.46%,但伸长率仅为3.4%。
        The microstructure and mechanical properties of Mg-11 Gd-3 Y-xCa-0.5 Zr(x=0, 0.2, 0.8 mass%) alloys were studied by means of metallographic microscope, scanning electron microscopy, X-ray diffraction, energy dispersive spectrometer, hardness tester and tensile testing machine. The results show that the as-cast Mg-11 Gd-3 Y-0.5 Zr alloy consists of α-Mg matrix and a large number of Mg_5Gd and Mg_(24)Y_5 phases at the grain boundary. 0.2 mass% Ca has no effect on the phase type of the alloy, while 0.8 mass% Ca is added, there is a new phase Mg_2Ca at the grain boundary and the grains are remarkably refined. With the increase of Ca content, the tensile strength and hardness of the alloy increase continuously, but the elongation decreases continuously. When the content of Ca is 0.8 mass%, the tensile strength and hardness reach 217 MPa and 92 HBW, respectively. Compared with the matrix alloy, it increases by 12.43% and 16.46%, respectively, but the elongation is only 3.4%.
引文
[1] 丁文江,吴玉娟,彭立明,等.高性能镁合金研究及应用的新进展[J].中国材料进展,2010,29(8):37-45.DING Wen-jiang,WU Yu-juan,PENG Li-ming,et al.Research and application development of advanced magnesium alloys[J].Materials China,2010,29(8):37-45.
    [2] Wan Y C,Xiao H C,Jiang S N,et al.Microstructure and mechanical properties of semi-continuous cast Mg-Gd-Y-Zr alloy[J].Materials Science and Engineering A,2014,617:243-248.
    [3] 陈晓亚,李全安,陈君,等.Gd含量对Mg-Gd-Y-Zr合金组织和性能的影响[J].材料热处理学报,2017,38(11):21-27.CHEN Xiao-ya,LI Quan-an,CHEN Jun,et al.Effect of Gd content on microstructure and properties of Mg-Gd-Y-Zr alloy[J].Transactions of Materials and Heat Treatment,2017,38(11):21-27.
    [4] 吴文祥,靳丽,董杰,等.Mg-Gd-Y-Zr高强耐热镁合金的研究进展[J].中国有色金属学报,2011,21(11):2709-2718.WU Wen-xiang,JIN Li,DONG Jie,et al.Research progress of high strength and heat resistant Mg-Gd-Y-Zr alloys[J].The Chinese Journal of Nonferrous Metals,2011,21(11):2709-2718.
    [5] 唐昌平,左国良,李志云,等.Mg-Gd系合金的合金化研究进展[J].材料导报,2018,32(21):3760-3767.TANG Chang-ping,ZUO Guo-liang,LI Zhi-yun,et al.Progress in alloying of Mg-Gd alloys[J].Materials Review,2018,32(21):3760-3767.
    [6] Liu Q Z,Ding X F,Liu Y P,et al.Analysis on microstructure and mechanical properties of Mg-Gd-Y-Nd-Zr alloy and its reinforcement mechanism[J].Journal of Alloys and Compounds,2017,690:961-965.
    [7] 付三玲,李全安,井晓天,等.Gd含量对Mg-Gd-Sm-Zr合金组织和性能影响[J].材料热处理学报,2016,37(8):41-46.FU San-ling,LI Quan-an,JING Xiao-tian,et al.Effect of Gd content on microstructure and properties of Mg-Gd-Sm-Zr alloy[J].Transactions of Materials and Heat Treatment,2016,37(8):41-46.
    [8] 徐道芬.Ca合金化在耐热镁合金中的应用[J].桂林航天工业学院学报,2013,18(2):154-156.XU Dao-fen.Application of Ca alloying in heat resistant magnesium alloys[J].Journal of Guilin University of Aerospace Technology,2013,18(2):154-156.
    [9] Zuo Y B,Fu X,Mou D,et al.Study on the role of Ca in the grain refinement of Mg-Ca binary alloys[J].Materials Research Innovations,2015,19:194-197.
    [10] 李长青,李全安,张兴渊,等.Ca在耐热镁合金中的应用[J].热加工工艺,2010,39(16):34-36.LI Chang-qing,LI Quan-an,ZHANG Xing-yuan,et al.Application of Ca in heat resistant magnesium alloy[J].Hot Working Technology,2010,39(16):34-36.
    [11] 李克艳,薛冬峰.电负性概念的新拓展[J].科学通报,2008,53(20):2442-2448.LI Ke-yan,XUE Dong-feng.New development of the concept of electronegativity[J].Science in China Press,2008,53(20):2442-2448.
    [12] 张清.含钇耐热镁合金的组织性能研究[D].西安:西安理工大学,2012.ZHANG Qing.Study on microstructure and properties of rhodium-resistant magnesium alloy[D].Xi'an:Xi'an University of Technology,2012.
    [13] Lee Y C,Dahle A K,Stjohn D H,et al.The role of solute in grain refinement of magnesium[J].Metallurgical and Materials Transactions A,2000,31(11):2895-2906.
    [14] Easton M A,Stjohn D H.A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles[J].Acta Materialia,2001,49(10):1867-1878.
    [15] 孔志刚,刘泓波,张虎,等.Zr含量对Mg-Zr合金组织和性能的影响[J].北京航空航天大学学报,2004,30(10):972-975.KONG Zhi-gang,LIU Hong-bo,ZHANG Hu,et al.Effect of Zr content on microstructure and properties of Mg-Zr alloy[J].Journal of Beijing University of Aeronautics and Astronautics,2004,30(10):972-975.
    [16] Hall E.The deformation and ageing of mild steel:III discussion of results[J].Proceedings oft he Physical Society.Section B,1951,64(9):747-753.
    [17] 范晓嫚,徐流杰.金属材料强化机理与模型综述[J].铸造技术,2017,38(12):2796-2798.FAN Xiao-man,XU Liu-jie.Summary of strengthening mechanism and model of metal materials[J].Foundry Technology,2017,38(12):2796-2798.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700