n-HA/PA66椎体增强器和椎体成形术治疗骨质疏松性椎体骨折的生物力学效果对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison of Biomechanical Effects on n-HA/PA66 Vertebral Body Cage and Percutaneous Vertebroplasty for Treating Osteoporotic Vertebral Fractures
  • 作者:李家琼 ; 王冬梅 ; 孙璟川 ; 杨勇 ; 史建刚
  • 英文作者:LI Jiaqiong;WANG Dongmei;SUN Jingchuan;YANG Yong;SHI Jiangang;School of Mechanical Engineering, Shanghai Jiao Tong University;Department of Orthopedics, Shanghai Changzheng Hospital Affiliated to the Second Military Medical University;
  • 关键词:n-HA/PA66椎体增强器 ; 椎体成形术 ; 骨质疏松性椎体骨折 ; 有限元分析 ; 生物力学
  • 英文关键词:n-HA/PA66 vertebral body enhencement cage;;percutaneous vertebroplasty;;osteoporotic vertebrate fracture;;finite element analysis;;biomechanics
  • 中文刊名:YISX
  • 英文刊名:Journal of Medical Biomechanics
  • 机构:上海交通大学机械与动力工程学院;第二军医大学附属长征医院骨科;
  • 出版日期:2018-12-15
  • 出版单位:医用生物力学
  • 年:2018
  • 期:v.33
  • 基金:上海市卫生和计划生育委员会科研课题(201640262)
  • 语种:中文;
  • 页:YISX201806011
  • 页数:8
  • CN:06
  • ISSN:31-1624/R
  • 分类号:57-64
摘要
目的对比研究n-HA/PA66椎体增强器和椎体成形术治疗骨质疏松性骨折椎体的生物力学效果,并为临床上选择n-HA/PA66椎体增强器的入路方式和数量提供理论依据。方法在正常椎体T11~L3有限元模型的基础上,建立4种增强器-椎体T11~L3有限元模型(横突入路A、横突入路B、腰大肌入路A和腰大肌入路B)、两种删除椎体横突间韧带的对照组模型,以及两种骨水泥-椎体T11~L3有限元模型(1.8、3.6 mL骨水泥)。在9种有限元模型上均施加500 N垂直荷载和7 N·m不同方向力矩,计算分析模型在垂直、前屈、后伸、侧弯和扭转工况下的应力和位移,并基于计算结果探究两种不同骨质疏松性椎体骨折治疗方法对椎体的生物力学影响。结果在相同荷载工况下,注入骨水泥后椎体的应力较植入增强器后椎体的应力增加更大,且位移减量更小。4种增强器-椎体T11~L3有限元模型中,采用腰大肌入路A方式(即经腰大肌单侧植入1枚增强器)植入增强器使得椎体应力增加最小。结论为了降低应力增加而引起再次骨折的风险,同时增强骨折椎体的刚度,建议临床医生应优先采用经腰大肌单侧植入1枚增强器来治疗骨质疏松性椎体骨折。
        Objective To compare the biomechanical effects of n-HA/PA66 vertebral body cage and percutaneous vertebroplasty for treating osteoporotic vertebral fracture, so as to provide theoretical foundations for clinically choosing operative approach and numbers of n-HA/PA66 cage. Methods Based on finite element models of normal vertebral T11-L3, four finite element models of vertebral T11-L3 with n-HA/PA66 cage implanted by different approaches(transversus approach A, B and psoas major muscle approach A, B) were established. Two controlled models without intertransverse ligaments were also built. Besides, two finite element models of osteoporotic vertebral T11-L3 with injection of 1.8 mL or 3.6 mL bone cement were built, respectively. The loads of 500 N and force torque of 7 N·m from different directions were applied on nine models, to calculate and analyze the displacement and stress of the osteoporotic vertebrae during standing, extension, anteflexion, lateral bending, and rotation, and to investigate the biomechanical effects from two kinds of osteoporotic vertebral fracture treatment on vertebral body. Results Under the same loading, bone cement could lead to a larger stress increase while a smaller displacement decrease in vertebral body compared with n-HA/PA66 cage. The model with n-HA/PA66 cage implanted by psoas major muscle approach A(namely, a cage was implanted through psoas major muscle) had the minimal increase in vertebral stress while the maximum decrease in displacement. Conclusions In order to reduce the risk of the additional fracture due to stress increment and recover the stiffness of osteoporotic vertebrae, clinicians are suggested to implant one n-HA/PA66 cage through psoas major to treat the osteoporotic vertebral fractures.
引文
[1] 中国健康促进基金会骨质疏松防治中国白皮书编委会. 骨质疏松症中国白皮书[J]. 中华健康管理学杂志, 2009, 3(3): 148-154
    [2] BOGER A, HEINI P, WINDOLF M, et al. Adjacent vertebral failure after vertebroplasty: A biomechanical study of low-modulus PMMA cement [J]. Eur Spine J, 2007, 16(12): 2118-2125.
    [3] MUELLER CW, BERLEMANN U. Kyphoplasty: Chances and limits [J]. Neurol India, 2005, 53(4): 451-457.
    [4] POLOKEIT A, NOLTE LP, FERGUSON SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: Finite-element analysis [J]. Spine, 2003, 28(10): 991-996.
    [5] 何江涛. 纳米羟基磷灰石/聚酰胺66复合生物活性人工椎体的极限生物力学及临床应用研究 [D]. 重庆: 重庆医科大学, 2007.
    [6] 梁晟伟, 黄民锋, 王向鹏. 人工椎体的组织相容性和力学性能[J]. 中国组织工程研究, 2011, 15(26): 4876-4879.
    [7] 张德盛, 刘树平, 刘跃洪, 等. 纳米羟基磷灰石/聚酰胺66复合生物活性支撑材料对椎体结构和高度的影响[J]. 中国组织工程研究, 2015, 19(43): 6977-6982.
    [8] 孟纯阳, 安洪, 蒋电明, 等. 纳米羟基磷灰石/聚酰胺66与人胚胎成纤维细胞的生物相容性研究[J]. 重庆医科大学学报, 2005, 30(2): 169-172.
    [9] 孙麟, 宋跃明, 刘浩, 等. 纳米羟基磷灰石/聚酰胺66椎体支撑体在脊柱前柱手术重建中的应用[J]. 中国矫形外科杂志, 2011, 19(18): 1497-1500.
    [10] WANG X, LI Y, WEI J, et al. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites [J]. Biomaterials, 2002, 23(24): 4787-4791.
    [11] QIAN X, LU H, ZHANG J, et al. Tissue engineering scaffold material of porous nanohydroxyapatite/polyamide 66 [J]. Int J Nanomed, 2010, 5(1): 331-335.
    [12] 李家琼, 王冬梅, 孙璟川, 等. 骨水泥对椎体成形术治疗胸腰椎骨质疏松压缩性骨折的生物力学影响[J]. 医用生物力学, 2018, 33(1): 7-13.LI JQ, WANG DM, SUN JC, et al. Biomechanical effects of cement volume on treatment of thoracolumbar compression fracture with vertebroplasty [J]. J Med Biomech, 2018, 33(1): 7-13.
    [13] GOEL VK, KONG W, HAN JS, et al. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles [J]. Spine, 1993, 18(11): 1531-1541.
    [14] SMIT TH, ODGAARD, SCHNEIDER E. Structure and function of vertebral trabecular bone [J]. Spine, 1997, 22(24): 2823-2833.
    [15] PENG L, BAI J, ZENG X, et al. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions [J]. Med Eng Phys, 2006, 28(3): 227-233.
    [16] BACA V, HORAK Z, MIKULENKA P, et al. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses [J]. Med Eng Phys, 2008, 30(7): 924-930.
    [17] 王倞, 李元超, 汪方, 等. 人体松质骨矿质密度与弹性模量关系[J]. 医用生物力学, 2014, 29(5): 465-470.WANG J, LI YC, WANG F, et al. Relationship between mineral density and elastic modulus of human cancellous bone [J]. J Med Biomech, 2014, 29(5): 465-470.
    [18] 陈庆宏. 胸腰段单纯性椎体压缩性骨折156例治疗总结[J]. 按摩与康复医学, 2006(8): 22-24.
    [19] GARCIA JM, DOBLARE M, SERAL B, et al. Three-dimensional finite element analysis of several internal and external pelvis fixations.[J]. J Biomech Eng, 2000, 122(5): 516.
    [20] 姜雨辰. 骨盆弓状线上下缘解剖型内固定器的设计及有限元分析[D]. 上海: 上海交通大学, 2015.
    [21] WILCOX RK. The biomechanics of vertebroplasty: A review [J]. P I Mech Eng H, 2004, 218(1): 1-10.
    [22] 包拥政, 祝周兴, 冯云升, 等. 骨水泥注射体积与骨质疏松压缩性骨折椎体及邻近椎体应力的关系[J]. 中国组织工程研究, 2015, 19(52): 8365-8372.
    [23] BELKOFF SM, MATHIS JM, JASPER LE, et al. The biomechanics of vertebroplasty: The effect of cement volume on mechanical behavior [J]. Spine, 2001, 26(14): 1537-1541.
    [24] EL-RICH M, ARNOUX PJ, WAGNAC E, et al. Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions [J]. J Biomech, 2009, 42(9): 1252-1262.
    [25] 朱海明, 丁亮, 张东, 等. 胸腰椎爆裂性骨折短节段伤椎固定三维有限元模型构建及生物力学比较研究[J]. 中国矫形外科杂志, 2015, 23(10): 917-920.
    [26] TENCER AF, AHMED AM, BURKE DL. Some static mechanical properties of the lumbar intervertebral joint, intact and injured [J]. J Biomech Eng, 1982, 104(3): 193-201.·致读者·

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700