密度泛函理论在多酚抗氧化机制中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Density Functional Theory in Antioxidant Mechanism of Polyphenols
  • 作者:常瑞 ; 朱秋劲
  • 英文作者:CHANG Rui;ZHU Qiu-jing;School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Agricultural and Animal Products Processing and Storage, Guizhou University;
  • 关键词:密度泛函理论 ; 多酚 ; 黄酮 ; 抗氧化机制 ; 计算
  • 英文关键词:density functional theory;;polyphenols;;flavone;;antioxidant mechanism;;calculation
  • 中文刊名:SDNS
  • 英文刊名:Journal of Mountain Agriculture and Biology
  • 机构:贵州大学酿酒与食品工程学院/贵州省农畜产品贮藏与加工重点实验室;
  • 出版日期:2019-04-28
  • 出版单位:山地农业生物学报
  • 年:2019
  • 期:v.38;No.167
  • 基金:国家自然科学地区基金(31660496);; 贵州省高层次创新型人才培养项目(黔科合平台人才[2016]5662);; 贵州大学研究生特色食品加工创新工作站科学技术研究基金项目(GDTSSPGZZ201705);; 贵州省科技支撑农业攻关项目(黔科合支撑[2016]2579);; 贵州省科学技术基金项目(黔科合基础[2016]1046号)
  • 语种:中文;
  • 页:SDNS201902010
  • 页数:9
  • CN:02
  • ISSN:52-5013/S
  • 分类号:57-65
摘要
天然多酚类化合物因富含酚羟基而具有优良自由基清除活性,其抗氧化活性的评价和作用机制解析备受人们关注。基于实验的体内外抗氧化活性评价法不能很好的探究酚羟基在不同环境、不同基团修饰、不同活性氧粒子情况下的抗氧化机制。多酚化合物分子结构与抗氧化效果间的关系依然困扰着人们,限制着对多酚的理性设计和深度利用。量子化学中的密度泛函理论是一种处理多电子体系的理论方法,广泛用于化学反应过程的模拟计算,在合适的理论水平下拟合实验结果良好,目前已成为研究天然产物反应活性的有力工具。通过总结密度泛函理论近年来其在多酚化合物抗氧化研究中的应用,为更好理解和应用多酚类化合物提供一定参考。
        Natural polyphenolic compounds have excellent free radical scavenging activity due to their rich phenolic hydroxyl groups. The evaluation of antioxidant activity and related mechanism have attracted much attention. Evaluation of antioxidant activity based on the experiment in vitro and in vivo may not effectively explore and investigate the antioxidant changes of phenolic hydroxyl groups in different environments, different group modifications and different reactive oxygen species. The relationship between the molecular structure of polyphenolic compounds and the antioxidant effect is still not well understood, limiting the rational design and deep utilization of polyphenols. Density functional theory in quantum chemistry is a theoretical method for processing multi-electron systems, and widely used in the simulation of chemical reaction processes. It is a powerful tool for studying the reactivity of natural products because better fitting results at a suitable level. By summarizing its application in the anti-oxidation research of polyphenol compounds in recent years, it could provide a reference for better utilization of polyphenolic compounds.
引文
[1]何知恩,孜力汗,刘源涛,等.多酚类材料的应用研究及前景展望[J].生命的化学,2017,37(6):919-924.
    [2]Poljsak B,uput D,Milisav I.Achieving the balance between ROS and antioxidants:when to use the synthetic antioxidants[J].Oxidative medicine and cellular longevity,2013(4):956792
    [3]Cao Y,True A D,Chen J,et al.Dual role(anti-and pro-oxidant)of gallic acid in mediating myofibrillar protein gelation and gel in vitro digestion[J].Journal of agricultural and food chemistry,2016,64(15):3054-3061.
    [4]Amorati R,Pedulli G F,Cabrini L,et al.Solvent and p H effects on the antioxidant activity of caffeic and other phenolic acids[J].Journal of agricultural and food chemistry,2006,54(8):2932-2937.
    [5]Amic D,Davidovic-Amic D,Beslo D,et al.SAR and QSAR of the antioxidant activity of flavonoids[J].Current medicinal chemistry,2007,14(7):827-845.
    [6]宋立江,狄莹,石碧.植物多酚研究与利用的意义及发展趋势[J].化学进展,2000,12(2):161-170.
    [7]姜楠,王蒙,韦迪哲,等.植物多酚类物质研究进展[J].食品安全质量检测学报,2016,7(2):439-444.
    [8]王俏,邹阳,钟耕,等.多酚类单体物质抗氧化活性的研究[J].食品工业科技,2011,32(1):137-145.
    [9]Radi R.Oxygen radicals,nitric oxide,and peroxynitrite:Redox pathways in molecular medicine[J].Proceedings of the National Academy of Sciences,2018,115(23):5839-5848.
    [10]Apak R,zyürek M,Gü9lüK,et al.Antioxidant activity/capacity measurement.2.Hydrogen atom transfer(HAT)-based,mixed-mode(electron transfer(ET)/HAT),and lipid peroxidation assays[J].Journal of agricultural and food chemistry,2016,64(5):1028-1045.
    [11]李维熙,李怡芳,何蓉蓉.儿茶素类化合物抗氧化评价方法及作用机制的研究现状[J].中药新药与临床药理,2016,27(2):295-303.
    [12]Amic'A,Markovic'Z,Markovic'J M D,et al.Free radical scavenging and COX-2 inhibition by simple colon metabolites of polyphenols:A theoretical approach[J].Computational biology and chemistry,2016,65:45-53.
    [13]Fernando I P S,Kim M,Son K T,et al.Antioxidant activity of marine algal polyphenolic compounds:a mechanistic approach[J].Journal of Medicinal Food,2016,19(7):615-628.
    [14]Jensen F.Atomic orbital basis sets[J].Wiley Interdisciplinary Reviews:Computational Molecular Science,2013,3(3):273-295.
    [15]Kohn W,Becke A D,Parr R G.Density functional theory of electronic structure[J].The Journal of Physical Chemistry,1996,100(31):12974-12980.
    [16]Bickelhaupt F M,Baerends E J.Kohn-Sham density functional theory:predicting and understanding chemistry[J].Reviews in computational chemistry,2000:1-86.
    [17]Mazzone G,Russo N,Toscano M.Antioxidant properties comparative study of natural hydroxycinnamic acids and structurally modified derivatives:Computational insights[J].Computational and Theoretical Chemistry,2016,1077:39-47.
    [18]Jeremic S,Markovic Z,Milenkovic D,et al.Scavening Potency of Anion of Gallic Acid with Different Radicals[J].Zbornik radova,2014,19(21):305-309.
    [19]Tanaka K,Sakai S,Tomiyama S,et al.Molecular orbital approach to antioxidant mechanisms of phenols by an ab initio study[J].Bulletin of the Chemical Society of Japan,1991,64(9):2677-2680.
    [20]Leopoldini M,Russo N,Toscano M.The molecular basis of working mechanism of natural polyphenolic antioxidants[J].Food Chemistry,2011,125(2):288-306.
    [21]Trouillas P,Marsal P,Siri D,et al.A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants:the specificity of the 3-OH site[J].Food Chemistry,2006,97(4):679-688.
    [22]Yen G C,Duh P D,Tsai H L.Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid[J].Food Chemistry,2002,79(3):307-313.
    [23]Roidoung S,Dolan K D,Siddiq M.Gallic acid as a protective antioxidant against anthocyanin degradation and color loss in vitamin-C fortified cranberry juice[J].Food chemistry,2016,210:422-427.
    [24]Badhani B,Sharma N,Kakkar R.Gallic acid:a versatile antioxidant with promising therapeutic and industrial applications[J].RSC Advances,2015,5(35):27540-27557.
    [25]Werner I,Bacher A,Eisenreich W.Retrobiosynthetic NMR studies with 13C-labeled glucose formation of gallic acid in plants and fungi[J].Journal of Biological Chemistry,1997,272(41):25474-25482.
    [26]Rajan.A computational investigation on the structure,global parameters and antioxidant capacity of a polyphenol,Gallic acid[J].Food Chemistry,2017,220:93-99.
    [27]Lespade L.Ab initio molecular dynamics of electron transfer from gallic acid to small radicals:A comparative study between hydroxyl and nitrogen dioxide radicals[J].Computational and Theoretical Chemistry,2018,1135:6-10.
    [28]陈莹,徐抗震,宋纪蓉,等.酚酸抗氧化活性的理论计算[J].食品科学,2011,32(9):36-39.
    [29]Chen Y,Xiao H,Zheng J,et al.Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives:An experimental and theoretical evaluation[J].Plos one,2015,10(3):e0121276.
    [30]Marino T,Galano A,Russo N.Radical scavenging ability of gallic acid toward OH and OOH radicals.Reaction mechanism and rate constants from the density functional theory[J].The Journal of Physical Chemistry B,2014,118(35):10380-10389.
    [31]Cheng J C,Dai F,Zhou B,et al.Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein:mechanism and structure-activity relationship[J].Food Chemistry,2007,104(1):132-139.
    [32]Saqib M,Iqbal S,Mahmood A,et al.Theoretical investigation for exploring the antioxidant potential of chlorogenic acid:a density functional theory study[J].International Journal of Food Properties,2016,19(4):745-751.
    [33]Lu Y,Wang A H,Shi P,et al.Kinetic Reaction Mechanism of Sinapic Acid Scavenging NO2and OH Radicals:A Theoretical Study[J].Plo S one,2016,11(9):62-72.
    [34]Amic'A,Markovic'Z,Klein E,et al.Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives[J].Food chemistry,2018,246:481-489.
    [35]Djorovic J,Markovic Z,Jeremic S,et al.Investigation of Reaction of Gallic Acid with Superoxide Radical Anion,Hydroxyl Radical and Methyl Peroxy Radical[J].Zbornik radova,2014,19(21):293-300.
    [36]orovic'J,Markovic'J M D,Stepanic'V,et al.Influence of different free radicals on scavenging potency of gallic acid[J].Journal of molecular modeling,2014,20(7):2345.
    [37]To2ovic'J,Markovic'S.Antioxidative activity of chlorogenic acid relative to trolox in aqueous solution-DFT study[J].Food Chemistry,2019,278:469-475.
    [38]Milenkovic'D,orovic'J,Petrovic'V,et al.Hydrogen atom transfer versus proton coupled electron transfer mechanism of gallic acid with different peroxy radicals[J].Reaction Kinetics,Mechanisms and Catalysis,2018,123(1):215-230.
    [39]Borgohain R,Handique J G,Guha A K,et al.A theoretical study on antioxidant activity of ferulic acid and its ester derivatives[J].Journal of Theoretical and Computational Chemistry,2016,15(4):1650028.
    [40]ProcházkováD,Bou2ováI,WilhelmováN.Antioxidant and prooxidant properties of flavonoids[J].Fitoterapia,2011,82(4):513-523.
    [41]刘科梅,聂挺,潘栋梁,等.4种异黄酮抗氧化活性的构效关系[J].食品科学,2016(23):1-6.
    [42]丁豪,苏里阳,王文君,等.昆仑雪菊中5个黄酮类化合物抗氧化活性的DFT研究[J].农产品加工,2016(11):1-4
    [43]谢湖均,雷群芳,方文军.槲皮素抗氧化活性的密度泛函理论研究[J].化学学报,2010,68(15):1467-1472.
    [44]Zhang D,Liu Y,Chu L,et al.Relationship between the structures of flavonoids and oxygen radical absorbance capacity values:a quantum chemical analysis[J].The Journal of Physical Chemistry A,2013,117(8):1784-1794.
    [45]胡冬华,高艳辉,陈雪松,等.几种玉米须黄酮分子结构性质及抗氧化活性的量子化学研究[J].东北师大学报(自然科学版),2009(4):107-111
    [46]Sykula A,Kowalska-Baron A,Dzeikala A,et al.An experimental and DFT study on free radical scavenging activity of hesperetin Schiff bases[J].Chemical Physics,2019,517:91-103.
    [47]Wang L,Yang F,Zhao X,et al.Effects of nitro-and amino-group on the antioxidant activity of genistein:A theoretical study[J].Food Chemistry,2019,275:339-345.
    [48]Zheng Y Z,Deng G,Chen D F,et al.The influence of C2=C3 double bond on the antiradical activity of flavonoid:Different mechanisms analysis[J].Phytochemistry,2019,157:1-7.
    [49]Tiwari M K,Mishra P C.Scavenging of hydroxyl,methoxy,and nitrogen dioxide free radicals by some methylated isoflavones[J].Journal of molecular modeling,2018,24(10):287.
    [50]屠幼英,杨子银.红茶中多酚类物质的抗氧化机制及其构效关系[J].中草药2007,38(10):1581-1589
    [51]裴玲,卞贺.白藜芦醇及其衍生物抗氧化活性的密度泛函理论研究[J].天然产物研究与开发,2016(7):1008-1050.
    [52]姜伟,张璐,陆豫,等.7种白藜芦醇及其多羟基位衍生物的清除自由基活性机理的理论预测分析[J].南昌大学学报(理科版),2016,40(3):269-275.
    [53]Cheng X,An P,Li S,et al.Repair Activity of trans-Resveratrol toward 2’-Deoxyguanosine Radicals[J].The Journal of Physical Chemistry B,2018,122(16):4397-4406.
    [54]Zheng Y Z,Chen D F,Deng G,et al.The antioxidative activity of piceatannol and its different derivatives:Antioxidative mechanism analysis[J].Phytochemistry,2018,156:184-192.
    [55]Galano A,Mazzone G,Alvarez-Diduk R,et al.Food antioxidants:chemical insights at the molecular level[J].Annual review of food science and technology,2016,7:335-352.
    [56]Zheng Y Z,Deng G,Chen D F,et al.Theoretical studies on the antioxidant activity of pinobanksin and its ester derivatives:Effects of the chain length and solvent[J].Food chemistry,2018,240:323-329.
    [57]Garzón A,Bravo I,Barbero A J,et al.Mechanistic and kinetic study on the reactions of coumaric acids with reactive oxygen species:a DFT approach[J].Journal of agricultural and food chemistry,2014,62(40):9705-9710.
    [58]Xue Y,Liu Y,Luo Q,et al.Antiradical Activity and Mechanism of Coumarin-Chalcone Hybrids:Theoretical Insights[J].The Journal of Physical Chemistry A,2018,122(43):8520-8529.
    [59]Andres garzon.Mechanistic and Kinetic Study on the Reactions of Coumaric Acids with Reactive Oxygen Species:A DFT Approach[J].Journal of agricultural and food chemistry,2014,62:9705-9710.
    [60]籍宝霞.多酚量子化学精度计算及抗氧化构效模型建立[J].食品科学,2009(13):153-156.
    [61]Mendes R A,Almeida S K C,Soares I N,et al.A computational investigation on the antioxidant potential of myricetin 3,4’-di-O-α-L-rhamnopyranoside[J].Journal of molecular modeling,2018,24(6):133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700