面向柔性光电子器件的低温外延技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Low-temperature epitaxial technology for flexible optoelectronic devices
  • 作者:罗毅 ; 于汪洋 ; 王健 ; 郝智彪 ; 汪莱 ; 孙长征 ; 韩彦军 ; 熊兵 ; 李洪涛
  • 英文作者:Yi LUO;Wangyang YU;Jian WANG;Zhibiao HAO;Lai WANG;Changzheng SUN;Yanjun HAN;Bing XIONG;Hongtao LI;State Key Laboratory on Integrated Optoelectronics of Electronic Engineering,Beijing National Research Center for Information Science and Technology;Department of Electronic Engineering,Tsinghua University;
  • 关键词:柔性光电子器件 ; 非单晶衬底 ; 大面积低温外延 ; ICP-MOVPE ; 电磁场耦合
  • 英文关键词:flexible optoelectronic devices;;non-single crystal substrate;;large area epitaxy;;ICP-MOVPE;;electromagnetic field coupling
  • 中文刊名:PZKX
  • 英文刊名:Scientia Sinica(Informationis)
  • 机构:北京信息科学与技术国家研究中心集成光电子学重点实验室;清华大学电子工程系;
  • 出版日期:2018-06-20
  • 出版单位:中国科学:信息科学
  • 年:2018
  • 期:v.48
  • 基金:国家重点基础研究发展计划(973)(批准号:2015CB351900);; 国家自然科学基金(批准号:51561165012,61574082);; 国家重点研发计划(批准号:2017YFA0205800);; 清华大学自主科研计划(批准号:20161080068)资助项目
  • 语种:中文;
  • 页:PZKX201806007
  • 页数:13
  • CN:06
  • ISSN:11-5846/TP
  • 分类号:90-102
摘要
柔性光电子器件需要在金属、玻璃、塑料等柔性非单晶衬底上制作或承载光电转换薄膜,已有的实现柔性光电子器件的方法分为两大类:直接在非单晶衬底上沉积有机光电转换薄膜;或者将外延生长的无机光电转换薄膜从单晶衬底转移到非单晶衬底.前者无法在柔性非单晶衬底上制作无机光电子器件,后者存在大面积转移的困难.如果能够在非单晶的柔性衬底上直接外延生长无机光电子器件,将为柔性无机光电子器件开辟一条新的技术路线和研究方向.传统的无机光电子器件的外延生长通常需要足够高的外延生长温度和耐高温的单晶衬底,前者裂解反应物并向其提供原子表面迁移能力,后者提供无机光电转换薄膜的晶格排列方式.通过电磁场耦合降低外延生长所需的温度,则有可能在柔性非单晶衬底上直接外延生长无机光电子薄膜.本文综合分析了国际上的低温外延技术的研究现状,并着重介绍了本研究团队提出的低温外延方法——电感应耦合等离子体金属有机物化学气相外延(inductive coupled plasma metal organic vapor phase epitaxy,ICP-MOVPE),包括ICP-MOVPE的设计思路、反应腔内等离子体的模拟仿真和该设备进行III族氮化物半导体外延生长的初步结果.
        Flexible optoelectronic devices need to make or load photoelectric conversion films on metal,glass,plastic and other flexible non-single crystal substrate.The existing methods for realizing flexible optoelectronic devices fall into two categories:deposition of organic optoelectronic conversion films directly on non-single-crystal substrates or transferring the epitaxial growth of the inorganic optoelectronic conversion film from a singlecrystal substrate to non-single-crystal substrate.The former cannot be used to produce inorganic optoelectronic devices on flexible non-single-crystal substrates,and the latter requires a difficult large-area transfer.If the inorganic optoelectronic devices can be extended directly on the flexible non-single-crystal substrate,a new technological and research direction will be developed for flexible inorganic optoelectronic devices.Traditional epitaxial growth of inorganic optoelectronic devices often requires a high epitaxial growth temperature and a single-crystal substrate with a high softening temperature.The former dissolves the reactants and provides the atomic surface with migration capability,and the latter provides the lattice arrangement of the inorganic optoelectronic conversion films.It is possible to directly grow the inorganic optoelectronic thin film on the flexible non-single-crystal substrate through the coupling of an electromagnetic field to reduce the temperature required by the epitaxial growth.This paper analysis the research status of low-temperature epitaxy technology,and emphatically introduces the low-temperature epitaxial method proposed by our research team-inductively coupled plasma metal-organic chemical vapor phase epitaxy(ICP-MOVPE)-including the design concept of ICPMOVPE,the simulation of the plasma in the reaction chamber,and the preliminary results of this equipment for the epitaxial growth of III-nitride semiconductors.
引文
1 Sher C W,Chen K J,Lin C C,et al.Large-area,uniform white light LED source on a flexible substrate.Opt Express,2015,23:A1167–A1178
    2 Hu J,Li L,Lin H,et al.Flexible integrated photonics:where materials,mechanics and optics meet.Opt Mater Express,2013,3:1313–1331
    3 Chen Y,Li H,Li M.Flexible and tunable silicon photonic circuits on plastic substrates.Sci Rep,2012,2:622
    4 Chang R F,Zhang Y H,Song J Z.Recent advances in mechanics of stretchable desingns.Chin J Sild Mech,2016,37:95 –106[常若菲,张一慧,宋吉舟.可延展结构的设计及力学研究新进展.固体力学学报,2016,37:95–106]
    5 Chang R F,Feng X,Chen W Q,et al.Mechanics designs for stretchable inorganic electronics.Chin Sci Bull,2015,60:2079–2090[常若菲,冯雪,陈伟球,等.可延展柔性无机电子器件的结构设计力学.科学通报,2015,60:2079–2090]
    6 Feng X,Lu B W,Wu J,et al.Review on stretchable and flexible inorganic electronics.Acta Phys Sin,2014,63:014201[冯雪,陆炳卫,吴坚,等.可延展柔性无机微纳电子器件原理与研究进展.物理学报,2014,63:014201]
    7 Park S,Ahn J,Feng X,et al.Theoretical and experimental studies of bending of inorganic electronic materials onplastic substrates.Adv Funct Mater,2010,18:2673–2684
    8 Bolat S,Sisman Z,Okyay A K.Demonstration of flexible thin film transistors with Ga N channels.Appl Phys Lett,2016,109:233504
    9 Kim H,Ohta J,Ueno K,et al.Fabrication of full-color Ga N-based light-emitting diodes on nearly lattice-matched flexible metal foils.Sci Rep,2017,7:2112
    10 Lee C H,Kim Y J,Hong Y J,et al.Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films.Adv Mater,2011,23:4614–4619
    11 Nakamura S.The roles of structural imperfections in In Ga N-based blue light-emitting diodes and laser diodes.Science,1998,281:956–961
    12 Li D,Sun X,Song H,et al.Realization of a high-performance Ga N UV detector by nanoplasmonic enhancement.Adv Mater,2012,24:845–849
    13 Shen L,Heikman S,Moran B,et al.Al Ga N/Al N/Ga N high-power microwave HEMT.IEEE Electron Device Lett,2001,22:457–459
    14 Maruska H P,Tietjen J J.The preparation and properties of vapor-deposited single-crystal Ga N.Appl Phys Lett,1969,15:327–329
    15 Amano H,Sawaki N,Akasaki I,et al.Metalorganic vapor phase epitaxial growth of a high quality Ga N film using an Al N buffer layer.Appl Phys Lett,1986,48:353–355
    16 Amano H,Kito M,Hiramatsu K,et al.P-type conduction in Mg-doped Ga N treated with low-energy electron beam irradiation(LEEBI).Jpn J Appl Phys,1989,28:L2112–L2114
    17 Nakamura S,Mukai T,Senoh M,et al.Thermal annealing effects on P-Type Mg-doped Ga N Films.Jpn J Appl Phys,1992,31:L139–L142
    18 Nakamura S,Iwasa N,Senoh M,et al.Hole compensation mechanism of P-Type Ga N films.Jpn J Appl Phys,1992,31 :1258–1266
    19 Nakamura S,Pearton S,Fasol G.The Blue Laser Diode:the Complete Story.Berlin:Springer,2000
    20 Wu C,Yu J,E Y,et al.Model for low-temperature growth of gallium nitride.Cryst Growth Des,2016,16:5023–5029
    21 Yu K M,Ting M,Novikov S V,et al.Effects of native defects on properties of low temperature grown,non-stoichiomtric gallium nitride.J Phys D Appl Phys,2015,48:385101
    22 Yang W,Wang W,Liu Z,et al.Effect of Al N buffer layer thickness on the properties of Ga N films grown by pulsed laser deposition.Mater Sci Semicon Process,2015,39:499–505
    23 Sato K,Ohta J,Inoue S,et al.Room-temperature epitaxial growth of high quality Al N on Si C by pulsed sputtering deposition.Appl Phys Express,2009,2:011003
    24 Martin C,Butcher K S A,Wintrebert-Fouquet M,et al.Modeling and experimental analysis of RPCVD based nitride film growth.In:Proceedings of Integrated Optoelectronic Devices,San Jose,2008.689407
    25 Qin F-W.PEMOCVD method with RHEED in situ monitoring and low temperature growth of Ga N based films.Dissertation for Ph.D.Degree.Dalian:Dalian University of Technology,2004[秦福文.RHEED原位监测的PEMOCVD方法及Ga N基薄膜低温生长.博士学位论文.大连:大连理工大学,2004]
    26 Franz G.Low Pressure Plasmas and Microstructuring Technology.Berlin:Springer,2009
    27 Wang W,Yang H,Li G.Achieve high-quality Ga N films on La0.3Sr1.7Al Ta O6(LSAT)substrates by low-temperature molecular beam epitaxy.Cryst Eng Comm,2013,15:2669–2674
    28 Zhong M M,Qin F W,Liu Y M,et al.Low-temperature growth of high c-orientated crystalline Ga N films on amorphous Ni/glass substrates with ECR-PEMOCVD.J Alloys Compd,2014,583:39–42
    29 Shon J W,Ohta J,Ueno K,et al.Fabrication of full-color In Ga N-based light-emitting diodes on amorphous substrates by pulsed sputtering.Sci Rep,2014,4:5325
    30 Shon J W,Ohta J,Ueno K,et al.Structural properties of Ga N films grown on multilayer graphene films by pulsed sputtering.Appl Phys Express,2014,7:085502
    31 Yu J,Wang J,Lu B,et al.Characteristics of hexagonal c-oriented titanium film as the template for Ga N epitaxy on glass substrate by electron beam evaporation.Thin Solid Films,2017,624:160–166
    32 Butcher K S A,Kemp B W,Hristov I B,et al.Gallium nitride film growth using a plasma based migration enhanced afterglow chemical vapor deposition system.Jpn J Appl Phys,2012,51:1–2
    33 Kao C C,Kuo H C,Yeh K F,et al.Light-output enhancement of nano-roughened Ga N laser lift-off light-emittingdiodes formed by ICP dry etching.IEEE Photon Technol Lett,2007,19:849–851
    34 Chang-Zheng S,Jin-Bo Z,Bing X,et al.Vertical and smooth,etching of In P by Cl2/CH4/Ar inductively coupled plasma at room temperature.Chin Phys Lett,2003,20:1312–1314
    35 Wu T,Hao Z B,Tang G,et al.Dry Etching characteristics of Al Ga N/Ga N heterostructures using inductively coupled H2/Cl2,Ar/Cl2 and BCl3/Cl2 plasmas.Jpn J Appl Phys,2003,42:L257–L259
    36 Martinu L,Poitras D.Plasma deposition of optical films and coatings:a review.J Vacuum Sci Tech A-Vacuum Surfs Films,2000,18:2619–2645
    37 Wei P,Li X,Li T,et al.Surface passivation of In0.83Ga0.17As photodiode with high-quality Si N layer fabricated by ICPCVD at the lower temperature.Infrared Phys Tech,2014,62:13–17
    38 Barankin M D,Gonzalez II E,Ladwig A M,et al.Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature.Sol Energy Mater Sol Cells,2007,91:924–930
    39 Kyrylov O,Cremer R,Neusch¨utz D,et al.Correlation between plasma conditions and properties of(Ti,Al)N coatings deposited by PECVD.Surf Coatings Tech,2002,151–152:359–364
    40 Yasui K,Hoshino S,Akahane T.Epitaxial growth of Al N films on Si substrates by ECR plasma assisted MOCVD under controlled plasma conditions in afterglow region.Appl Surf Sci,2000,159-160:462–467
    41 Zhi A B,Qin F W,Zhang D,et al.Low-temperature growth of highly c-oriented In N films on glass substrates with ECR-PEMOCVD.Vacuum,2012,86:1102–1106
    42 Fu S,Chen J,Zhang H,et al.Characterizations of Ga N film growth by ECR plasma chemical vapor deposition.J Cryst Growth,2009,311:3325–3331
    43 Luo Y,Wang J,Hao Z B,et al.Epitaxial growth device and method of compound semiconductor based on ICP.Patent No.201410053424.4.[罗毅,王健,郝智彪,等.基于ICP的化合物半导体的外延生长装置及方法.专利号:201410053424.4]
    44 Wu C,Wang J,Zhang W,et al.Modeling and simulation of ion-filtered inductively coupled plasma using argon plasma.Jpn J Appl Phys,2015,54:036101
    45 Yu W Y,Wang J,Wu C,et al.Simulation of nitrogen plasma in ion-filtered ICP chamber.International NanoOptoelectronic Workshop,i NOW,2017
    46 Yu J,Wang L,Hao Z,et al.Theoretical study on critical thickness of heteroepitaxial h-BN on hexagonal crystals.J Cryst Growth,2017,467:126–131
    47 Yu J,Hao Z,Li L,et al.Influence of dislocation density on internal quantum efficiency of Ga N-based semiconductors.AIP Adv,2017,7:035321

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700