三维细微观结构的折叠和组装方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Folding and assembly methods for forming three-dimensional mesostructures
  • 作者:范智超 ; 张帆 ; 张一慧
  • 英文作者:Zhichao Fan;Fan Zhang;Yihui Zhang;Applied Mechanics Laboratory, Ministry of Education, Department of Engineering Mechanics, Tsinghua University;
  • 关键词:三维组装 ; 4D打印 ; 三维细微观结构 ; 压缩屈曲
  • 英文关键词:3D assembly;;4D printing;;3D mesostructures;;compressive buckling
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:清华大学航天航空学院工程力学系教育部应用力学重点实验室;
  • 出版日期:2018-08-20
  • 出版单位:科学通报
  • 年:2018
  • 期:v.63
  • 基金:国家自然科学基金(11672152,11722217);; 组织部“青年千人计划”资助
  • 语种:中文;
  • 页:KXTB201823004
  • 页数:13
  • CN:23
  • ISSN:11-1784/N
  • 分类号:31-43
摘要
近年来,尺度介于几十纳米到几百微米之间的三维(3D)细微观结构受到研究人员越来越多的关注.其原因在于,通过在先进材料中形成具有特定几何拓扑的三维细微构造,可以使得宏观材料在声、光、热、力、电学等方面表现出新的特性.这种具备天然材料中不存在的超常物理特性的材料也被称为"超材料".由于超材料在各类微系统技术中的巨大应用前景,三维细微观结构的设计与制备方法日益成为国内外的研究热点.目前除了3D打印这类较成熟的增材制造方法之外,应力控制的折叠方法和力学引导的组装方法也相继被提出,并因其在材料类型、几何拓扑、尺度范围等方面的优势,亦逐渐成为研究焦点.本文综述了这两类方法的最新进展,并对其设计原理、成形过程以及相关的理论和应用进行分析和总结.
        In recent years, there has been an increasing interest in three-dimensional(3D) mesostructures with feature sizes between tens of nanometres and hundreds of micrometres. By forming 3D mesoscale architectures in advanced materials, the resulting materials systems are capable of offering novel acoustic, optical, thermal, mechanical and electronic properties that are not available in natural world, and are, thereby, also known as metamaterials. Owing to the tremendous application prospects of metamaterials in various advanced areas(e.g., electronics, photonics and energy storage), the design and the fabrication of 3D mesostructures has attracted growing attentions. In addition to the various techniques of 3D printing, another two classes of strategies have been developed, including the stress-controlled folding method and the mechanically guided assembly method. In the context of stress-controlled folding method, advanced techniques such as 4D printing and micro-/nano-scale origami were proposed. As for the 4D printing, the planar structures formed by 3D printing techniques have a bilayer or multilayer heterogeneous architecture, in which mismatched strains resulted from external stimulation(e.g., heating) lead to 2 D-to-3D transformation through self-folding or self-rolling. As for the micro-/nano-scale origami, the folding deformations are typically resulted from the forces induced by capillarity, thin-film residual stresses or mechanical stimuli response of active materials(for example, hydrogels, shape-memory polymers and shape-memory alloys). In the mechanically guided assembly method, a strategically designed thin 2D precursor is fabricated by modern planar technologies(e.g., photolithography) and then transfer-printed onto a prestretched elastomer substrate. Then strong sites of adhesion are created between the 2D precursor and the substrate by selective bonding. Release of the prestretched substrate gives rise to compressive forces at the bonding areas, thereby transforming the 2D precursor into a 3D configuration by compressive buckling. The key design parameters of this method include: the geometric pattern, thicknesses and mechanical properties of the 2D precursor; the position of selective bonding; and the magnitude of the prestrain in the elastomeric substrate. These two methods provide additional, unique options for the manufacturing of 3 D mesostructures. The stress-controlled folding method usually applies to a limited class of 3 D geometries, such as simple curved shells(e.g., tubes and scrolls), polyhedra and cylindrical structures. In comparison, the mechanically guided assembly method provides a route to more complex 3D topologies, because of the coupled translational and rotational deformations that can be controlled during the compressive buckling. In this review, we summarize the latest progress of these two methods, and introduce the basic design principles and fabrication techniques. The resulting mesostructures with representative topologies are illustrated, along with the relevant design method and applications. Opportunities exist in the development of an integrated approach to combine effectively these existing methods, which might facilitate progress towards the goal of establishing methods that allow for rapid formation of arbitrary 3D architectures in any constituent materials.
引文
1 Shelby R A,Smith D R,Schultz S.Experimental verification of a negative index of refraction.Science,2001,292:77-79
    2 Pendry J B,Holden A J,Robbins D J,et al.Magnetism from conductors and enhanced nonlinear phenomena.IEEE Trans Microwave Theory Tech,1999,47:2075-2084
    3 Smith D R,Pendry J B,Wiltshire M C K.Metamaterials and negative refractive index.Science,2004,305:788-792
    4 Smith D R,Padilla W J,Vier D C,et al.Composite medium with simultaneously negative permeability and permittivity.Phys Rev Lett,2000,84:4184-4187
    5 Pendry J B,Holden A J,Stewart W J,et al.Extremely low frequency plasmons in metallic mesostructures.Phys Rev Lett,1996,76:4773-4776
    6 Shelby R A,Smith D R,Nemat-Nasser S C,et al.Microwave transmission through a two-dimensional,isotropic,left-handed metamaterial.Appl Phys Lett,2001,78:489-491
    7 Schurig D,Mock J J,Justice B J,et al.Metamaterial electromagnetic cloak at microwave frequencies.Science,2006,314:977-980
    8 Parazzoli C G,Greegor R B,Li K,et al.Experimental verification and simulation of negative index of refraction using Snell’s law.Phys Rev Lett,2003,90:107401
    9 Yen T J,Padilla W J,Fang N,et al.Terahertz magnetic response from artificial materials.Science,2004,303:1494-1496
    10 Linden S,Enkrich C,Wegener M,et al.Magnetic response of metamaterials at 100 terahertz.Science,2004,306:1351-1353
    11 Chen H T,Padilla W J,Zide J M O,et al.Active terahertz metamaterial devices.Nature,2006,444:597-600
    12 Zhang S,Fan W J,Panoiu N C,et al.Experimental demonstration of near-infrared negative-index metamaterials.Phys Rev Lett,2005,95:137404
    13 Valentine J,Zhang S,Zentgraf T,et al.Three-dimensional optical metamaterial with a negative refractive index.Nature,2008,455:376-379
    14 Liu N,Guo H C,Fu L W,et al.Three-dimensional photonic metamaterials at optical frequencies.Nat Mater,2008,7:31-37
    15 Lezec H J,Dionne J A,Atwater H A.Negative refraction at visible frequencies.Science,2007,316:430-432
    16 Cai W S,Chettiar U K,Kildishev A V,et al.Optical cloaking with metamaterials.Nat Photonics,2007,1:224-227
    17 Norris D J,Arlinghaus E G,Meng L L,et al.Opaline photonic crystals:How does self-assembly work?Adv Mater,2004,16:1393-1399
    18 Maldovan M,Thomas E L.Diamond-structured photonic crystals.Nat Mater,2004,3:593-600
    19 Jeon S,Park J U,Cirelli R,et al.Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks.Proc Natl Acad Sci USA,2004,101:12428-12433
    20 Jang J H,Ullal C K,Maldovan M,et al.3D micro-and nanostructures via interference lithography.Adv Funct Mater,2007,17:3027-3041
    21 Campbell M,Sharp D N,Harrison M T,et al.Fabrication of photonic crystals for the visible spectrum by holographic lithography.Nature,2000,404:53-56
    22 Shir D,Nelson E C,Chen Y C,et al.Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography.Appl Phys Lett,2009,94:011101
    23 Qi M H,Lidorikis E,Rakich P T,et al.A three-dimensional optical photonic crystal with designed point defects.Nature,2004,429:538-542
    24 Noda S,Tomoda K,Yamamoto N,et al.Full three-dimensional photonic bandgap crystals at near-infrared wavelengths.Science,2000,289:604-606
    25 Lin S Y,Fleming J G,Hetherington D L,et al.A three-dimensional photonic crystal operating at infrared wavelengths.Nature,1998,394:251-253
    26 La Fratta C N,Fourkas J T,Baldacchini T,et al.Multiphoton fabrication.Angew Chem Int Ed,2007,46:6238-6258
    27 Kawata S,Sun H B,Tanaka T,et al.Finer features for functional microdevices:Micromachines can be created with higher resolution using two-photon absorption.Nature,2001,412:697-698
    28 Deubel M,Von Freymann G,Wegener M,et al.Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.Nat Mater,2004,3:444-447
    29 Cumpston B H,Ananthavel S P,Barlow S,et al.Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication.Nature,1999,398:51-54
    30 Xu H Y,Shi X H,Gao F,et al.Ultrathin three-dimensional thermal cloak.Phys Rev Lett,2014,112:054301
    31 Narayana S,Sato Y.Heat flux manipulation with engineered thermal materials.Phys Rev Lett,2012,108:214303
    32 Han T C,Bai X,Gao D L,et al.Experimental demonstration of a bilayer thermal cloak.Phys Rev Lett,2014,112:054302
    33 Liu Z Y,Zhang X X,Mao Y W,et al.Locally resonant sonic materials.Science,2000,289:1734-1736
    34 Hussein M I,Leamy M J,Ruzzene M.Dynamics of phononic materials and structures:Historical origins,recent progress,and future outlook.Appl Mech Rev,2014,66:040802
    35 Fang N,Xi D J,Xu J Y,et al.Ultrasonic metamaterials with negative modulus.Nat Mater,2006,5:452-456
    36 Cummer S A,Christensen J,Alu A.Controlling sound with acoustic metamaterials.Nat Rev Mater,2016,1:16001
    37 Zheng X Y,Lee H,Weisgraber T H,et al.Ultralight,ultrastiff mechanical metamaterials.Science,2014,344:1373-1377
    38 Zheng X,Smith W,Jackson J,et al.Multiscale metallic metamaterials.Nat Mater,2016,15:1100-1106
    39 Silverberg J L,Evans A A,Mc Leod L,et al.Using origami design principles to fold reprogrammable mechanical metamaterials.Science,2014,345:647-650
    40 Schaedler T A,Jacobsen A J,Torrents A,et al.Ultralight metallic microlattices.Science,2011,334:962-965
    41 Overvelde J T,Weaver J C,Hoberman C,et al.Rational design of reconfigurable prismatic architected materials.Nature,2017,541:347-352
    42 Meza L R,Das S,Greer J R.Strong,lightweight,and recoverable three-dimensional ceramic nanolattices.Science,2014,345:1322-1326
    43 Jang D,Meza L R,Greer F,et al.Fabrication and deformation of three-dimensional hollow ceramic nanostructures.Nat Mater,2013,12:893-898
    44 Coulais C,Teomy E,de Reus K,et al.Combinatorial design of textured mechanical metamaterials.Nature,2016,535:529-532
    45 Babaee S,Shim J,Weaver J C,et al.3D soft metamaterials with negative poisson’s ratio.Adv Mater,2013,25:5044-5049
    46 Wang Q,Jackson J A,Ge Q,et al.Lightweight mechanical metamaterials with tunable negative thermal expansion.Phys Rev Lett,2016,117:175901
    47 Raffy S,Mascaro B,Brunet T,et al.A soft 3D acoustic metafluid with dual-band negative refractive index.Adv Mater,2016,28:1760-1764
    48 Brunet T,Merlin A,Mascaro B,et al.Soft 3D acoustic metamaterial with negative index.Nat Mater,2015,14:384-388
    49 Brunet T,Leng J,Mondain-Monval O.Soft acoustic metamaterials.Science,2013,342:323-324
    50 Yu M R,Huang Y,Ballweg J,et al.Semiconductor nanomembrane tubes:Three-dimensional confinement for controlled neurite outgrowth.ACS Nano,2011,5:2447-2457
    51 Tian B Z,Liu J,Dvir T,et al.Macroporous nanowire nanoelectronic scaffolds for synthetic tissues.Nat Mater,2012,11:986-994
    52 Leong T G,Randall C L,Benson B R,et al.Tetherless thermobiochemically actuated microgrippers.Proc Natl Acad Sci USA,2009,106:703-708
    53 Froeter P,Huang Y,Cangellaris O V,et al.Toward intelligent synthetic neural circuits:Directing and accelerating neuron cell growth by self-rolled-up silicon nitride microtube array.ACS Nano,2014,8:11108-11117
    54 Feiner R,Engel L,Fleischer S,et al.Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.Nat Mater,2016,15:679-685
    55 Wood R J.The challenge of manufacturing between macro and micro.Am Sci,2014,102:124-131
    56 Piyawattanametha W,Patterson P R,Hah D,et al.Surface-and bulk-micromachined two-dimensional scanner driven by angular vertical comb actuators.J Microelectromech Syst,2005,14:1329-1338
    57 Bishop D,Pardo F,Bolle C,et al.Silicon micro-machines for fun and profit.J Low Temp Phys,2012,169:386-399
    58 Zhang H G,Yu X D,Braun P V.Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes.Nat Nanotechnol,2011,6:277-281
    59 Wu H,Yu G,Pan L,et al.Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles.Nat Commun,2013,4:1943
    60 Sun K,Wei T S,Ahn B Y,et al.3D printing of interdigitated Li-ion microbattery architectures.Adv Mater,2013,25:4539-4543
    61 Pikul J H,Zhang H G,Cho J,et al.High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes.Nat Commun,2013,4:1732
    62 Pan L,Yu G,Zhai D,et al.Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity.Proc Natl Acad Sci USA,2012,109:9287-9292
    63 Deng J W,Ji H X,Yan C L,et al.Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance.Angew Chem Int Ed,2013,52:2326-2330
    64 Lamoureux A,Lee K,Shlian M,et al.Dynamic kirigami structures for integrated solar tracking.Nat Commun,2015,6:8092
    65 Fan Z,Razavi H,Do J W,et al.Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates.Nat Mater,2009,8:648-653
    66 Yu X,Huang W,Li M Y,et al.Ultra-small,high-frequency,and substrate-immune microtube inductors transformed from 2D to 3D.Sci Rep,2015,5:9661
    67 Yan Z,Zhang F,Liu F,et al.Mechanical assembly of complex,3D mesostructures from releasable multilayers of advanced materials.Sci Adv,2016,2:e1601014
    68 Xu S,Yan Z,Jang K I,et al.Assembly of micro/nanomaterials into complex,three-dimensional architectures by compressive buckling.Science,2015,347:154-159
    69 Rogers J,Huang Y G,Schmidt O G,et al.Origami MEMS and NEMS.MRS Bull,2016,41:123-129
    70 Huang W,Yu X,Froeter P,et al.On-chip inductors with self-rolled-up Si Nx nanomembrane tubes:A novel design platform for extreme miniaturization.Nano Lett,2012,12:6283-6288
    71 Huang W,Koric S,Yu X,et al.Precision structural engineering of self-rolled-up 3D nanomembranes guided by transient quasi-static FEM modeling.Nano Lett,2014,14:6293-6297
    72 Grimm D,Bufon C C B,Deneke C,et al.Rolled-up nanomembranes as compact 3D architectures for field effect transistors and fluidic sensing applications.Nano Lett,2013,13:213-218
    73 Ahn B Y,Duoss E B,Motala M J,et al.Omnidirectional printing of flexible,stretchable,and spanning silver microelectrodes.Science,2009,323:1590-1593
    74 Tumbleston J R,Shirvanyants D,Ermoshkin N,et al.Continuous liquid interface production of 3D objects.Science,2015,347:1349-1352
    75 Skylar-Scott M A,Gunasekaran S,Lewis J A.Laser-assisted direct ink writing of planar and 3D metal architectures.Proc Natl Acad Sci USA,2016,113:6137-6142
    76 Parekh D P,Ladd C,Panich L,et al.3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels.Lab Chip,2016,16:1812-1820
    77 Murphy S V,Atala A.3D bioprinting of tissues and organs.Nat Biotechnol,2014,32:773-785
    78 Ladd C,So J H,Muth J,et al.3D printing of free standing liquid metal microstructures.Adv Mater,2013,25:5081-5085
    79 Konga Y L,Guptab M K,Johnsonc B N,et al.3D printed bionic nanodevices.Nano Today,2016,11:330-350
    80 Kong Y L,Tamargo I A,Kim H,et al.3D printed quantum dot light-emitting diodes.Nano Lett,2014,14:7017-7023
    81 Janusziewicz R,Tumbleston J R,Quintanilla A L,et al.Layerless fabrication with continuous liquid interface production.Proc Natl Acad Sci USA,2016,113:11703-11708
    82 Dickey M D,Chiechi R C,Larsen R J,et al.Eutectic gallium-indium(EGa In):A liquid metal alloy for the formation of stable structures in microchannels at room temperature.Adv Funct Mater,2008,18:1097-1104
    83 Adams J J,Duoss E B,Malkowski T F,et al.Conformal printing of electrically small antennas on three-dimensional surfaces.Adv Mater,2011,23:1335-1340
    84 Tibbits S.4D printing:Multi-material shape change.Archit Design,2014,84:116-121
    85 Raviv D,Zhao W,Mc Knelly C,et al.Active printed materials for complex self-evolving deformations.Sci Rep,2014,4:7422
    86 Gladman A S,Matsumoto E A,Nuzzo R G,et al.Biomimetic 4D printing.Nat Mater,2016,15:413-418
    87 Wu J T,Yuan C,Ding Z,et al.Multi-shape active composites by 3D printing of digital shape memory polymers.Sci Rep,2016,6:24224
    88 Ge Q,Qi H J,Dunn M L.Active materials by four-dimension printing.Appl Phys Lett,2013,103:131901
    89 Ge Q,Dunn C K,Qi H J,et al.Active origami by 4D printing.Smart Mater Struct,2014,23:094007
    90 Liu Y,Genzer J,Dickey M D.“2D or not 2D”:Shape-programming polymer sheets.Prog Polym Sci,2016,52:79-106
    91 Kang S H,Dickey M D.Patterning via self-organization and self-folding:Beyond conventional lithography.MRS Bull,2016,41:93-96
    92 Huang G,Mei Y.Thinning and shaping solid films into functional and integrative nanomembranes.Adv Mater,2012,24:2517-2546
    93 Chen Z,Huang G,Trase I,et al.Mechanical self-assembly of a strain-engineered flexible layer:Wrinkling,rolling,and twisting.Phys Rev Appl,2016,5:017001
    94 Syms R R,Yeatman E M,Bright V M,et al.Surface tension-powered self-assembly of microstructures-the state-of-the-art.J Microelectromech Syst,2003,12:387-417
    95 Syms R R.Equilibrium of hinged and hingeless structures rotated using surface tension forces.J Microelectromech Syst,1995,4:177-184
    96 Syms R,Yeatman E.Self-assembly of three-dimensional microstructures using rotation by surface tension forces.Electron Lett,1993,29:662-664
    97 Pandey S,Ewing M,Kunas A,et al.Algorithmic design of self-folding polyhedra.Proc Natl Acad Sci USA,2011,108:19885-19890
    98 Gracias D H,Kavthekar V,Love J C,et al.Fabrication of micrometer-scale,patterned polyhedra by self-assembly.Adv Mater,2002,14:235-238
    99 Cho J H,Keung M D,Verellen N,et al.Nanoscale origami for 3D optics.Small,2011,7:1943-1948
    100 Py C,Reverdy P,Doppler L,et al.Capillary origami:Spontaneous wrapping of a droplet with an elastic sheet.Phys Rev Lett,2007,98:156103
    101 Guo X Y,Li H,Ahn B Y,et al.Two-and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications.Proc Natl Acad Sci USA,2009,106:20149-20154
    102 Schmidt O G,Eberl K.Nanotechnology:Thin solid films roll up into nanotubes.Nature,2001,410:168
    103 Prinz V Y,Seleznev V A,Gutakovsky A K,et al.Free-standing and overgrown In Ga As/Ga As nanotubes,nanohelices and their arrays.Phys E,2000,6:828-831
    104 Li X L.Strain induced semiconductor nanotubes:From formation process to device applications.J Phys D Appl Phys,2008,41:193001
    105 Wang H,Zhen H,Li S,et al.Self-rolling and light-trapping in flexible quantum well-embedded nanomembranes for wide-angle infrared photodetectors.Sci Adv,2016,2:e1600027
    106 Solovev A A,Mei Y,Bermúdez Ure?a E,et al.Catalytic microtubular jet engines self-propelled by accumulated gas bubbles.Small,2009,5:1688-1692
    107 Prinz V Y,Seleznev V,Samoylov V,et al.Nanoscale engineering using controllable formation of ultra-thin cracks in heterostructures.Microelectron Eng,1996,30:439-442
    108 Mei Y F,Solovev A A,Sanchez S,et al.Rolled-up nanotech on polymers:from basic perception to self-propelled catalytic microengines.Chem Soc Rev,2011,40:2109-2119
    109 Mei Y,Huang G,Solovev A A,et al.Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers.Adv Mater,2008,20:4085-4090
    110 Malachowski K,Jamal M,Jin Q R,et al.Self-folding single cell grippers.Nano Lett,2014,14:4164-4170
    111 Karnaushenko D D,Karnaushenko D,Makarov D,et al.Compact helical antenna for smart implant applications.NPG Asia Mater,2015,7:e188
    112 Bassik N,Stern G M,Jamal M,et al.Patterning thin film mechanical properties to drive assembly of complex 3D structures.Adv Mater,2008,20:4760-4764
    113 Bassik N,Stern G M,Gracias D H.Microassembly based on hands free origami with bidirectional curvature.Appl Phys Lett,2009,95:091901
    114 Wu Z L,Moshe M,Greener J,et al.Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses.Nat Commun,2013,4:1586
    115 Palleau E,Morales D,Dickey M D,et al.Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting.Nat Commun,2013,4:2257
    116 Na J H,Evans A A,Bae J,et al.Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers.Adv Mater,2015,27:79-85
    117 Na J H,Bende N P,Bae J,et al.Grayscale gel lithography for programmed buckling of non-Euclidean hydrogel plates.Soft Matter,2016,12:4985-4990
    118 Klein Y,Efrati E,Sharon E.Shaping of elastic sheets by prescription of non-Euclidean metrics.Science,2007,315:1116-1120
    119 Kim J,Hanna J A,Byun M,et al.Designing responsive buckled surfaces by halftone gel lithography.Science,2012,335:1201-1205
    120 Liu Y,Boyles J K,Genzer J,et al.Self-folding of polymer sheets using local light absorption.Soft Matter,2012,8:1764-1769
    121 Hawkes E,An B,Benbernou N M,et al.Programmable matter by folding.Proc Natl Acad Sci USA,2010,107:12441-12445
    122 Felton S,Tolley M,Demaine E,et al.A method for building self-folding machines.Science,2014,345:644-646
    123 White T J,Broer D J.Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers.Nat Mater,2015,14:1087-1098
    124 Ware T H,Mc Conney M E,Wie J J,et al.Voxelated liquid crystal elastomers.Science,2015,347:982-984
    125 Ryu J,D’Amato M,Cui X,et al.Photo-origami-Bending and folding polymers with light.Appl Phys Lett,2012,100:161908
    126 Jamal M,Zarafshar A M,Gracias D H.Differentially photo-crosslinked polymers enable self-assembling microfluidics.Nat Commun,2011,2:527
    127 Yu X,Arbabi E,Goddard L L,et al.Monolithically integrated self-rolled-up microtube-based vertical coupler for three-dimensional photonic integration.Appl Phys Lett,2015,107:031102
    128 Blees M K,Barnard A W,Rose P A,et al.Graphene kirigami.Nature,2015,524:204-207
    129 Annett J,Cross G L.Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate.Nature,2016,535:271-275
    130 Zhu S,Li T.Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake,storage,and release.ACS Nano,2014,8:2864-2872
    131 Zhu S,Li T.Hydrogenation enabled scrolling of graphene.J Phys D Appl Phys,2013,46:075301
    132 Qi Z N,Campbell D K,Park H S.Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami.Phys Rev B,2014,90:245437
    133 Patra N,Wang B,Král P.Nanodroplet activated and guided folding of graphene nanostructures.Nano Lett,2009,9:3766-3771
    134 Grosso B F,Mele E J.Bending rules in graphene kirigami.Phys Rev Lett,2015,115:195501
    135 Bahamon D A,Qi Z N,Park H S,et al.Graphene kirigami as a platform for stretchable and tunable quantum dot arrays.Phys Rev B,2016,93:235408
    136 Zhang Y H,Yan Z,Nan K W,et al.A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes.Proc Natl Acad Sci USA,2015,112:11757-11764
    137 Yan Z,Zhang F,Wang J C,et al.Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials.Adv Funct Mater,2016,26:2629-2639
    138 Liu Y,Yan Z,Lin Q,et al.Guided formation of 3D helical mesostructures by mechanical buckling:Analytical modeling and experimental validation.Adv Funct Mater,2016,26:2909-2918
    139 Shi Y,Zhang F,Nan K,et al.Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive buckling.Extrem Mech Lett,2017,11:105-110
    140 Nan K,Luan H,Yan Z,et al.Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling.Adv Funct Mater,2017,27:1604281
    141 Yan Z,Han M,Yang Y,et al.Deterministic assembly of 3D mesostructures in advanced materials via compressive buckling:A short review of recent progress.Extrem Mech Lett,2017,11:96-104
    142 Yan Z,Han M,Shi Y,et al.Three-dimensional mesostructures as high-temperature growth templates,electronic cellular scaffolds,and self-propelled microrobots.Proc Natl Acad Sci USA,2017,114:E9455-E9464
    143 Jang K I,Li K,Chung H U,et al.Self-assembled three dimensional network designs for soft electronics.Nat Commun,2017,8:15894
    144 Fu H,Nan K,Bai W,et al.Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics.Nat Mater,2018,17:268-276
    145 Fan Z,Hwang K C,Rogers J A,et al.A double perturbation method of postbuckling analysis in 2D curved beams for assembly of 3Dribbon-shaped structures.J Mech Phys Solids,2018,111:215-238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700