沼渣对铅锌冶炼废渣生物化学性质及植物生长的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Biogas Residue on Plant Growth and Biochemical Properties of Lead-Zinc Smelting Slag
  • 作者:邱静 ; 吴永贵 ; 罗有发 ; 龙恩
  • 英文作者:QIU Jing;WU Yonggui;LUO Youfa;LONG En;College of Resources and Environmental Engineering, Guizhou University;Institute of Applied Ecology, Guizhou University;
  • 关键词:铅锌冶炼废渣 ; 沼渣 ; 养分 ; 微生物活性 ; 重金属
  • 英文关键词:Lead-Zinc smelting slag;;biogas residue;;nutrients;;microbial activity;;heavy metals
  • 中文刊名:TRQS
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:贵州大学资源与环境工程学院;贵州大学应用生态研究所;
  • 出版日期:2019-06-14
  • 出版单位:水土保持学报
  • 年:2019
  • 期:v.33;No.162
  • 基金:国家自然科学基金-贵州省联合基金项目(U1612442-3);; 国家自然科学基金项目(41663009)
  • 语种:中文;
  • 页:TRQS201903050
  • 页数:8
  • CN:03
  • ISSN:61-1362/TV
  • 分类号:342-349
摘要
为研究沼渣作为改良剂对铅锌冶炼废渣环境条件的改善及修复植物生长的影响,采用盆栽试验研究不同比例(0,1%,3%,5%,7%,9%)沼渣添加和黑麦草(Lolium perenne L.)生长对废渣养分含量、微生物学特性、重金属赋存形态及黑麦草的生物学特征的综合影响。结果表明:与对照废渣相比,添加沼渣后废渣养分(N、P、K)、有机质、酶活性(碱性磷酸酶、蔗糖酶、脲酶、过氧化氢酶)、微生物数量(细菌、真菌和放线菌)以及微生物活性(呼吸强度)均显著(p<0.05)增加;不同比例沼渣添加均显著增加黑麦草鲜重、根长、株高并显著降低植物组织(地上和地下部)中重金属含量(p<0.05)。沼渣添加和黑麦草生长通过促进废渣中酸溶态重金属(Cu、Cd、Zn、Pb)向残渣态转化进而降低废渣中重金属的生物有效性。典范对应分析表明,沼渣施用量在5%,7%,9%时对废渣微环境条件改善作用较大,其中,较低的沼渣添加量(5%)就能显著改善废渣的微环境条件及促进修复植物健康生长。因此,综合考虑沼渣作为有机改良剂的最佳费用和效应间的关系,在设置试验条件下,可将5%的沼渣添加量作为铅锌冶炼废渣有机改良及植物修复的最佳施用比例。
        A pot experiment was conducted to evaluate the effects of different proportions of biogas residue(BR) on growth of ryegrass(Lolium perenne L.) and physico-chemical properties of lead-zinc smelting slag. BR was incorporated into slag at rates of 0, 1%, 3%, 5%, 7% and 9%, respectively. The comprehensive effects of biogas residue on nutrient content, microbiological characteristics, forms of heavy metals of lead-zinc smelting slag and biological characteristics of ryegrass were studied. The results showed that addition of BR improved slags properties and thus facilitated growth of ryegrass. Compared with the control, BR application significantly increased nutrients(nitrogen, phosphorus and potassium), organic matter, enzyme activity(alkaline phosphatase, invertase, urease and catalase), the number of microbes(bacteria, fungi and actinomycetes) and microbial activity(respiratory intensity)(p < 0.05). Different proportions of BR also significantly enhanced the total fresh weight, root length and plant height of ryegrass and significantly reduced the heavy metal content of plant tissues(the ground and underground part)(p < 0.05). BR addition and ryegrass growth promoted the transformation of acid-extractable state of heavy metals(Cu, Cd, Zn and Pb) into the residual state, and then decreased the bioavailability of heavy metals in slag. Canonical correspondence analysis(CCA) revealed that the application amount of BR at 5%, 7% and 9% effectively improved the micro-environmental conditions of slag, among which, the lower addition amount of BR(5%) could also significantly improve the micro-environmental conditions of slag and promote the healthy growth of plants for restoration. Therefore, considering the relationship between the cost and effects caused by BR, the 5% addition amount of biogas residue could be used as the optimal application ratio for the improvement and phytoremediation of lead-zinc smelting slag.
引文
[1]Yang Y G,Li S,Bi X Y,et al.Lead,Zn and Cd in slags,stream sediments,and soils in an abandoned Zn smelting region,southwest of China,and Pb and S isotopes as source tracers[J].Journal of Soils and Sediments,2010,10(8):1527-1539.
    [2]Bi X Y,Feng X B,Yang Y G,et al.Allocation and source attribution of lead and cadmium in maize(Zea mays L.)impacted by smelting emissions[J].Environmental Pollution,2009,157(3):834-839.
    [3]Houben D,Couder E,Sonnet P.Leachability of cadmium,lead,and zinc in a long-term spontaneously revegetated slag heap:Omplications for phytostabilization[J].Journal of Soils and Sediments,2013,13(3):543-554.
    [4]Potysz A,Grybos M,Kierczak J,et al.Metal mobilization from metallurgical wastes by soil organic acids[J].Chemosphere,2017,178:197-211.
    [5]Houben D,Pircar J,Sonnet P.Heavy metal immobilization by cost-effective amendments in a contaminated soil:Effects on metal leaching and phytoavailability[J].Journal of Geochemical Exploration,2012,123(12):87-94.
    [6]Yang S,Cao J,Li F,et al.Field evaluation of the effectiveness of three industrial by-products as organic amendments for phytostabilization of a Pb/Zn mine tailings[J].Environmental Science:Processes and Impacts,2015,18(1):95-103.
    [7]Yuan M,Xu Z P,Baumgartl T,et al.Organic amendment and plant growth improved aggregation in Cu/PbZn tailings[J].Soil Science Society of America Journal,2016,80(1):27-37.
    [8]Abubaker J,Risberg K,Pell M.Biogas residues as fertilisers-Effects on wheat growth and soil microbial activities[J].Applied Energy,2012,99(2):126-134.
    [9]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2002:239-240.
    [10]中华人民共国国家环境保护部.HJ/T 20.761-2015固体废物中有机质的测定-灼烧减量法[S].北京:中国标准出版社,2015.
    [11]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:274-340.
    [12]程丽娟,薛泉宏.微生物学实验技术[M].北京:科学出版社,2012:53-56.
    [13]张朝阳,彭平安,宋建中,等.改进BCR法分析国家土壤标准物质中重金属化学形态[J].生态环境学报,2012,21(11):1881-1884.
    [14]Violante A,Cozzolino V,Perelomov L,et al.Mobility and bioavailability of heavy metals and metalloids in soil environments[J].Journal of Soil Science and Plant Nutrition,2010,10(3):268-292.
    [15]Luo Y F,Wu Y G,Qiu J,et al.Suitability of four woody plant species for the phytostabilization of a zinc smelting slag site after 5years of assisted revegetation[J].Journal of Soils and Sediments,2019,19(2):1-14.
    [16]Siebers N,Siangliw M,Tongcumpou C.Cadmium uptake and subcellular distribution in rice plants as affected by hosphorus:Soil and hydroponic experiments[J].Journal of Soil Science and Plant Nutrition,2013,13(4):833-844.
    [17]Loosemore A,Straczek A,Hinsinger P,et al.Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH[J].Plant and Soil,2004,260(2):19-32.
    [18]Adamo P,Iavazzo P,Albanese S,et al.Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils[J].Science of the Total Environment,2014,500/501:11-22.
    [19]Liao J,Wen Z,Ru X,et al.Distribution and migration of heavy metals in soil and crops affected by acid mine drainage:Public health implications in Guangdong Province,China[J].Ecotoxicology and Environmental Safety,2016,124:460-469.
    [20]Bara■ N,■krivanj S,Muti■ J,et al.Heavy metals fractionation in agricultural soils of Pb/Zn mining region and their transfer to selected vegetables[J].Water Air Soil Pollution,2016,227(12):481-494.
    [21]Gao Y,Zhou P,Mao L,et al.Effects of plant species coexistence on soil enzyme activities and soil microbial community structure under Cd and Pb combined pollution[J].Journal of Environmental Sciences,2010,22(7):1040-1048.
    [22]Alvarenga P,Palma P,Gon9alves A P,et al.Organic residues as immobilizing agents in aided phytostabilization:(II)Effects on soil biochemical and ecotoxicological characteristics[J].Chemosphere,2009,74(10):1301-1308.
    [23]Asensio V,Vega F A,Singh B R,et al.Effects of tree vegetation and waste amendments on the fractionation of Cr,Cu,Ni,Pb and Zn in polluted mine soils[J].Science of The Total Environment,2013,443:446-453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700