生长温度对In_(0.5)Ga_(0.5)As/GaAs量子点尺寸的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of growth temperature on size of In_(0.5)Ga_(0.5)As/GaAs quantum dots
  • 作者:马明明 ; 杨晓珊 ; 郭祥 ; 王一 ; 汤佳伟 ; 张之桓 ; 许筱晓 ; 丁召
  • 英文作者:MA Ming-Ming;YANG Xiao-Shan;GUO Xiang;WANG Yi;TANG Jia-Wei;ZHANG Zhi-Huan;XU Xiao-Xiao;DING Zhao;Key Laboratory of Micro-Nano-Electronics and Software Technology of Guizhou Province,College of Big Data and Information Engineering,Guizhou University;
  • 关键词:MBE ; In_(0.5)Ga_(0.5)As/GaAs量子点 ; S-K ; Ostwald
  • 英文关键词:MBE;;In_(0.5)Ga_(0.5)As/GaAs QDs;;S-K;;Ostwald
  • 中文刊名:YZYF
  • 英文刊名:Journal of Atomic and Molecular Physics
  • 机构:贵州大学大数据与信息工程学院贵州省微纳电子与软件技术重点实验室;
  • 出版日期:2018-10-22 09:36
  • 出版单位:原子与分子物理学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(61564002,11664005,61604046);; 贵州省科学技术基金(黔科合J字[2014]2046号,黔科合LH字[2016]7436号);; 贵州省教育厅自然科学基金(黔教合KY字(2014)265号)
  • 语种:中文;
  • 页:YZYF201901017
  • 页数:6
  • CN:01
  • ISSN:51-1199/O4
  • 分类号:109-114
摘要
采用分子束外延(MBE)技术制备In_(0.5)Ga_(0.5)As/GaAs量子点,利用扫描隧道显微镜(STM)对不同衬底温度下生长的样品进行表征分析.研究表明量子点密度随温度升高先增大后减小,其尺寸随温度的升高而增大.另外,量子点以S-K模式生长并受Ostwald熟化机制影响,其尺寸增大所需的能量来自应变能和温度提供的能量,高温条件下表面原子的解吸附作用会限制量子点的生长.
        The In_(0.5)Ga_(0.5)As/GaAs quantum dots(QDs) were prepared by the technique of molecular beam epitaxy(MBE), Scanning tunneling microscope(STM) was used to characterize the samples grown at different growth temperatures. The results show that the densities of the In_(0.5)Ga_(0.5)As/GaAs QDs increase first and then decrease, and the sizes increase with the increase of temperature. Besides, this work demonstrates that the growth mode of QDs is affected by curing mechanism of Ostwald. The energy needed for the size increase is provided by strain energy and temperature, however, the growth of QDs is limited by the desorption of surface adatoms at high temperature.
引文
[1] Wang H Y, Guo K Q, Wang B, et al. Theoretical study on phase transformation and thermodynamic properties of GaP[J]. J. At. Mol. Phys., 2017, 34: 6 (in Chinese) [王海燕, 郭凯琪, 王彪, 等. GaP相变及热力学性质的理论研究[J].原子与分子物理学报, 2017, 34: 6]
    [2] Wang Z M, Feng S L, Lu Z D, et al. Annealing behavior of InAs/GaAs quantum dot structures [J]. J. Electron Mater., 1996, 27: 59.
    [3] Zhuang Q D, Li H X, Li J M, et al. Self-organization of the InGaAs/GaAs quantum dots superlattice [J]. J. Crystal Growth, 1999, 201: 1161.
    [4] Schmidbauer M, Wang Z M, Mazur Y I, et al. Initial stages of chain formation in a single layer of (In,Ga)As quantum dots grown on GaAs(100) [J]. Appl. Phys. Lett., 2007, 91: 3203.
    [5] Mano T, Watanabe K, Tsukamoto S, et al. Fabrication of InGaAs quantum dots on GaAs(0 0 1) by droplet epitaxy [J]. J. Crystal Growth, 2000, 209: 504.
    [6] Lytvyn P M, Mazur Y I, Benamara M, et al. Temperature driven three-dimensional ordering of InGaAs/GaAs quantum dot superlattices grown under As2 gas flux [J]. Appl. Surf. Sci., 2014, 305: 689.
    [7] Kamarudin M A, Hayne M, Zhuang Q D, et al. GaSb quantum dot morphology for different growth temperature and the different growth temperature and the dissolution effect of the GaSb capping layer [J]. J. Phys. D: Appl. Phys., 2010, 43: 065402.
    [8] Saito H, Nishi K, Sugou S, et al. Shape transition of InAs quantum dots by growth at high temperature [J]. Appl. Phys. Lett., 1999, 74: 1224.
    [9] Zhou X, Yang Z R, Luo Z J, et al. Study on temperature calibration and surface phase transition of GaAs crystal substrate in MBE growth by RHEED realtime monitoring [J]. Acta Phys. Sin., 2011, 60: 016109.
    [10] Ebner J T, Arthur J R. The effect of lattice mismatch on the dynamical microstructure of III-V compound surface [J]. J. Vacuum Sci. Technol. A, 1987, 5: 2007.
    [11] Wood C E C, Morgan D V, Rathbun L. Molecular-beam epitaxial group III arsenide alloys: Effect of substrate temperature on composition [J]. J. Appl. Phys., 1982, 53: 4524.
    [12] Wang Z C. Thermodynamic statistical physics [M]. Beijing: Higher Education Press, 2008 (in Chinese) [汪志诚.热力学统计物理[M].北京:高等教育出版社,2008]
    [13] Wang Z G. Nano-semiconductor technology [M]. Beijing: Chemical Industry Press, 2006 (in Chinese) [王占国.纳米半导体技术[M]. 北京:化学工业出版社,2006]
    [14] Muller P, Saul A. Elastic effects on surface physics [J]. Surf. Sci. Rep., 2004, 54: 157.
    [15] Pankaow N, Panyakeow S, Ratanathammaphan S, et al. Formation of In0.5Ga0.5As/GaAs ring-and-hole structure by droplet molecular beam epitaxy [J]. J. Crystal Growth, 2009, 311: 1832.
    [16] Ezzedini M, Hidouri T, Sayari A, et al. Detecting spatially localized excition in self-organization InAs/InGaAs quantum dot superlattices: a way to improve the photovoltaic efficiency [J]. Nanoscale Res. Lett., 2017, 12: 450.
    [17] Ibtissem F, Faouzi S, Bouzaiene L, et al. Effect of carriers localized in clusters on optical properties of In0.21Ga0.79As/GaAs multiple quantum wells [J]. Current Appl. Phys., 2016, 17: 1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700