Static light scattering properties of a ZnO nanosphere aqueous suspension at visible and near-infrared wavelengths
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Static light scattering properties of a ZnO nanosphere aqueous suspension at visible and near-infrared wavelengths
  • 作者:武浩鹏 ; 史久林 ; 严峰 ; 杨俊杰 ; 张余宝 ; 何兴道
  • 英文作者:Haopeng Wu;Jiulin Shi;Feng Yan;Junjie Yang;Yubao Zhang;Xingdao He;Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University;National Engineering Laboratory for Nondestructive testing and Optoelectric Sensing Technology and Application,Nanchang Hangkong University;
  • 中文刊名:GXKB
  • 英文刊名:中国光学快报(英文版)
  • 机构:Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University;National Engineering Laboratory for Nondestructive testing and Optoelectric Sensing Technology and Application,Nanchang Hangkong University;
  • 出版日期:2017-01-10
  • 出版单位:Chinese Optics Letters
  • 年:2017
  • 期:v.15
  • 基金:supported by the National Natural Science Foundation of China(Nos.41666004,41576033,and 61465009);; the Graduate Student Innovation Foundation of Jiangxi Province(No.YC2015-S331)
  • 语种:英文;
  • 页:GXKB201701022
  • 页数:6
  • CN:01
  • ISSN:31-1890/O4
  • 分类号:108-113
摘要
The scattering properties of ZnO nanospheres with four different particle diameters of 10, 50, 100, and 200 nm suspended in water are investigated theoretical and experimentally in the spectral range of the entire visible range and part of the near-infrared region. The scattering properties of ZnO nanospheres suspended in water are described by employing three main parameters: the angular distribution of the scattering intensity I, the scattering extinction coefficient αscat, and the scattering cross section σscat. The results indicate that(i) at a certain wavelength, the angular distribution of the scattering intensity appears as an obviously forwardpropagating feature, and the forward-scattering intensity is dominant gradually when the particle diameter increases from 10 to 200 nm, and(ii) the scattering extinction coefficient and cross section can be determined by using the measured transmittance changes of a pure water sample and a given ZnO sample; they all are shown to be dependent on the particle size and incident wavelength. The experimental results of four different scattering samples agree well with the theoretical predictions within the given wavelength range.
        The scattering properties of ZnO nanospheres with four different particle diameters of 10, 50, 100, and 200 nm suspended in water are investigated theoretical and experimentally in the spectral range of the entire visible range and part of the near-infrared region. The scattering properties of ZnO nanospheres suspended in water are described by employing three main parameters: the angular distribution of the scattering intensity I, the scattering extinction coefficient αscat, and the scattering cross section σscat. The results indicate that(i) at a certain wavelength, the angular distribution of the scattering intensity appears as an obviously forwardpropagating feature, and the forward-scattering intensity is dominant gradually when the particle diameter increases from 10 to 200 nm, and(ii) the scattering extinction coefficient and cross section can be determined by using the measured transmittance changes of a pure water sample and a given ZnO sample; they all are shown to be dependent on the particle size and incident wavelength. The experimental results of four different scattering samples agree well with the theoretical predictions within the given wavelength range.
引文
1.L.Rayleigh,Philos.Mag.47,375(1899).
    2 .G.Mie,Ann.Phys.330,377(1908).
    3 .J.Tyndall,Proc.R.Soc.London 17,223(1868).
    4 .E.I.Franses,J.M.Caruthers,and S.Yarlagadda,J.Chem.Phys.83,1531(1985).
    5 .T.Wriedt,Part.Part.Syst.Char.15,67(1998).
    6 .T.Wriedt,J.Quantum Spectrosc.RA.110,833(2009).
    7 .G.Gouesbet,F.Xu,and Y.P.Han,J.Quantum Spectrosc.RA.112,2249(2011).
    8 .B.Schmidtke and E.A.R?ssler,J.Chem.Phys.141,044511(2014).
    9 .B.Kang,Y.Cai,and L.Wang,Chin.Opt.Lett.14,070401(2016).
    10 .M.Hlaing,B.Gebear-Eigzabher,A.Roa,A.Marcano,D.Radu,and C.Y.Lai,Opt.Mater.58,439(2016).
    11 .I.Kim,K.S.Lee,T.S.Lee,D.S.Jung,W.S.Lee,W.M.Kim,and K.S.Lee,Synthetic Met.199,174(2015).
    12 .S.Eustis and M.A.El-Sayed,Phys.Chem.B 109,16350(2005).
    13 .K.Aslan,P.Holley,L.Davies,J.R.Lakowicz,and C.D.Geddes,J.Am.Chem.Soc.127,12115(2005).
    14 .G.S.He,H.Y.Qin,and Q.Zheng,J.Appl.Phys.105,023110(2009).
    15 .G.S.He,K.T.Yong,J.Zhu,and P.N.Prasad,Phys.Rev.A 85,043839(2012).
    16 .P.J.Wyatt,Anal.Chem.86,7171(2014).
    17 .M.I.Mishchenko,L.D.Travis,and A.A.Lacis,Scattering,Absorption,and Emission of Light by Small Particles(NASA Goddard Institute for Space Studies,2002).
    18 .J.Shi,H.Wu,F.Yan,J.Yang,and X.He,J.Nanopart.Res.18,23(2016).
    19 .P.K.Jain,K.S.Lee,I.H.El-Sayed,and M.A.El-Sayed,J.Phys.Chem.B 110,7238(2006).
    20 .C.Ding,K.Yang,W.Li,W.Guo,X.Zhang,and M.Xia,Opt.Laser Technol.62,135(2014).
    21 .T.Honda,M.Terakawa,and M.Obara,Appl.Phys.B 111,117(2013).
    22 .A.A.Tomchenko,G.P.Harmer,B.T.Marquis,and J.W.Allen,Sens.Actuators B 93,126(2003).
    23 .S.H.Chen,U.Nickel,and X.M.Ren,J.Colloid Interface Sci.176,286(1995).
    24 .S.Chen,J.Shi,X.Kong,Z.Wang,and D.Liu,Laser Phys.Lett.10,055006(2013).
    25 .S.J.Chen,Y.Zhou,T.R.Zhai,Z.N.Wang,and D.H.Liu,Laser Phys.Lett.9,570(2012).
    26 .W.Liben and B.Goldberg,J.Opt.Soc.Am.43,347(1953).
    27 .M.Born and E.Wolf,The Principles of Optics(Pergamon,1980).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700