PEG胁迫下不同品系藜麦抗旱性评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of drought tolerance of various quinoa species under PEG stress
  • 作者:岳凯 ; 魏小红 ; 刘文瑜 ; 韩厅 ; 辛夏青 ; 赵颖
  • 英文作者:YUE Kai;WEI Xiao-hong;LIU Wen-yu;HAN Ting;XIN Xia-qing;ZHAO Ying;College of Life Science and Technology,Gansu Agricultural University;Gansu Academy of Agricultural Sciences;
  • 关键词:藜麦品系 ; PEG胁迫 ; 生长 ; 抗逆生理生化指标 ; 光合指标
  • 英文关键词:quinoa;;PEG stress;;growth status;;physiological and biochemical indexes of stress resistance;;photosynthetic indexes
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:甘肃农业大学生命科学技术学院;甘肃省农业科学院;
  • 出版日期:2019-05-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:v.37;No.174
  • 基金:国家自然基金项目(31560663);; 甘肃省农业科学院农业科技创新专项计划(2017GAAS66)
  • 语种:中文;
  • 页:GHDQ201903007
  • 页数:8
  • CN:03
  • ISSN:61-1088/S
  • 分类号:58-65
摘要
利用不同浓度PEG溶液模拟干旱胁迫,研究5种品系藜麦幼苗的形态、生理生化及光合特性,并对其进行耐旱性评价。结果表明:15%PEG处理下各品系藜麦株高增量、叶面积及生物量显著(P<0.05)低于对照,其中株高增量、叶面积、生物量下降幅度最小的品系分别是NK1、NK2和NK5,分别比对照下降了44.38%、25.39%和48.23%;随着干旱胁迫加剧,各藜麦品系叶片内相对含水量显著(P<0.05)下降,叶片的质膜透性、丙二醛(MDA)含量、脯氨酸(Pro)含量上升,15%PEG胁迫下NK2和NK3的Pro含量分别是对照的2.69和1.93倍,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性均先升后降,SOD、CAT和APX活性在5%PEG处理下达到最大值,而POD活性在10%PEG处理下达到最大;随干旱胁迫增强,5种品系藜麦幼苗的净光合速率(P_n)、蒸腾速率(T_r)和气孔导度(G_s)降低,胞间CO_(2 )浓度(C_i)先降后升,叶绿素(Chl)先升后降,其中NK5品系P_n下降幅度最小,比对照下降了51.15%。运用隶属函数法对藜麦抗旱能力进行综合评定,不同藜麦品系耐旱性为NK5>NK1>NK2>NK4>NK3。
        In this study,we used various concentrations of PEG solution to simulate drought stress to investigate the morphological, physiological, biochemical,and photosynthetic characteristics of 5 quinoa species, and evaluated their drought tolerance. The results showed that:(1) 15% PEG treatment significantly impacted the height increase rate, leaf area, and biomass of all species over the control(P<0.05).The species with the lowest increase rate of plant height, leaf area, and biomass were NK1, NK2, and NK5, which decreased by 44.38%, 25.39%, and 48.23% compared with the control, respectively.(2) With increasing drought stress, the relative water content in leaves of each quinoa specie decreased significantly(P<0.05), the leaf membrane permeability, malondialdehyde(MDA), and proline(Pro) contents were increased, Pro in NK2 and NK3 were 2.69 and 1.93 times of that in the control under 15%PEG treatment, respectively. The activities of superoxide dismutase(SOD), peroxidase(POD), catalase(CAT) and ascorbic acid peroxidase(APX) were all initially rose and then declined.SOD, CAT,and APX activities reached the maximum at 5%PEG concentration, while POD activity reached the maximum at 10% concentration treatment.(3) With increasing drought stress, net photosynthetic rate(P_n), transpiration rate(T_r), and stomatal conductance(G_s) decreased. The concentration of intercellular CO_2(C_i) decreased first and then increased but chlorophyll(Chl) initially increased and then decreased later. Among all species,the decrease of NK5 P_n was the lowest, which was 51.15% lower than that of the control. In conclusion, the drought tolerance of quinoa was evaluated by the membership function method and the drought tolerance of different quinoa varieties ranked as NK5>NK1>NK2>NK4>NK3.
引文
[1] 肖正春,张广伦.藜麦及其资源开发利用[J].中国野生植物资源,2014,33(2):62-66.
    [2] 张崇玺,贡布扎西·旺姆.南美藜(Quinoa)苗期低温冻害试验研究[J].西藏农业科技,1994,(4):49-54.
    [3] 王黎明,马宁,李颂,等.藜麦的营养价值及其应用前景[J].食品工业科技,2014,35(1):381-384.
    [4] Repocarrasco R,Espinoza C,Jacobsen S E.Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule)[J].Food Reviews International,2003,19(1-2):179-189.
    [5] Vegagálvez A,Miranda M,Vergara J,et al.Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.),an ancient Andean grain:a review[J].Journal of the Science of Food & Agriculture,2010,90(15):2541.
    [6] 宋家壮,李萍萍,付为国.水分胁迫及复水对虉草生理生化特性的影响[J].草业学报,2012,21(2):62-69.
    [7] Jacobsen S E,Mujica A,Jensen C R.The resistance of quinoa to adverse abiotic factors[J].Food Reviews International,2003,19(1-2):99-109.
    [8] Read J J.Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety[J].Journal of Plant Nutrition,2002,25(12):2689-2704.
    [9] Raney J A,Reynolds D J,Elzinga D B,et al.Transcriptome analysis of drought induced stress in Chenopodium quinoa[J].American Journal of Plant Sciences,2014,5(3):338-357.
    [10] Jacobsen S E,Monteros C,Christiansen J L,et al.Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages[J].European Journal of Agronomy,2005,22(2):131-139.
    [11] Koyro H W,Eisa S S.Effect of salinity on composition,viability and germination of seeds of Chenopodium quinoa Willd.[J].Plant & Soil,2008,302(1-2):79-90.
    [12] 杨发荣,刘文瑜,黄杰,等.不同藜麦品种对盐胁迫的生理响应及耐盐性评价[J].草业学报,2017,26(12):77-88.
    [13] Schm?ckel S M,Lightfoot D J,Razali R,et al.Identification of putative transmembrane proteins involved in salinity tolerance in Chenopodium quinoa by integrating physiological data,RNAseq,and SNP analyses[J].Frontiers in Plant Science,2017,8(15):1023.
    [14] Burrieza H P,Koyro H W,Tosar L M,et al.High salinity induces dehydrin accumulation in Chenopodium quinoa,Willd.cv.Hualhuas embryos[J].Plant & Soil,2012,354(1-2):69-79.
    [15] Liu J,Wang R,Liu W,et al.Genome-wide characterization of heat-shock protein 70s from Chenopodium quinoa and expression analyses of Cqhsp70s in response to drought stress[J].Genes,2018,9(2):35.
    [16] Jacobsen S E,Liu F,Jensen C R.Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa,Willd.)[J].Scientia Horticulturae,2009,122(2):281-287.
    [17] Fischer S,Wilckens R,Jara J,et al.Variation in antioxidant capacity of quinoa (Chenopodium quinoa Will.) subjected to drought stress[J].Industrial Crops & Products,2013,46(3):341-349.
    [18] 冯冬霞,施生锦.叶面积测定方法的研究效果初报[J].中国农学通报,2005,21(6):150-152,155.
    [19] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:46-57.
    [20] Nakano Y,Asada K.Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J].Plant & Cell Physiology,1981,22(5):867-880.
    [21] 李忠旺,陈玉梁,罗俊杰,等.棉花抗旱品种筛选鉴定及抗旱性综合评价方法[J].干旱地区农业研究,2017,35(1):240-247.
    [22] 张丽华,赵洪祥,谭国波,等.不同玉米杂交种抗旱性比较研究[J].玉米科学,2012,20(3):29-33.
    [23] 李文娆,张岁岐,丁圣彦,等.干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系[J].生态学报,2010,30(19):5140-5150.
    [24] 蔡海霞,吴福忠,杨万勤.干旱胁迫对高山柳和沙棘幼苗光合生理特征的影响[J].生态学报,2011,31(9):2430-2436.
    [25] 李仲芳.植物生理学实验指导[M].成都:西南交通大学出版社,2012:92-93.
    [26] 陈爱葵,韩瑞宏,李东洋,等.植物叶片相对电导率测定方法比较研究[J].广东教育学院学报,2010,30(5):88-91.
    [27] 赵欣欣,贾恩吉,于运国,等.玉米杂交种抗旱性鉴定与选择[J].吉林农业大学学报,2000,22(2):56-61.
    [28] 王瑾,刘桂茹,杨学举.PEG胁迫下不同抗旱性小麦品种幼苗形态及主要理化特性的比较[J].河北农业大学学报,2005,28(5):6-10.
    [29] 余玲,王彦荣,Garnetttrevor,等.紫花苜蓿不同品种对干旱胁迫的生理响应[J].草业学报,2006,15(3):75-85.
    [30] 李予霞,崔百明,董新平,等.PEG处理下葡萄试管苗脯氨酸及内源ABA含量变化的研究[J].石河子大学学报(自然科学版),2004,22(1):43-45.
    [31] 郭郁频,米福贵,闫利军,等.不同早熟禾品种对干旱胁迫的生理响应及抗旱性评价[J].草业学报,2014,23(4):220-228.
    [32] Ajay A.Oxidative stress and antioxidative system in plants[J].Soviet Physics Doklady,2005,16(10):1227-1238.
    [33] 王文林,万寅婧,刘波,等.土壤逐渐干旱对菖蒲生长及光合荧光特性的影响[J].生态学报,2013,33(13):3933-3940.
    [34] 宇万太,于永强.植物地下生物量研究进展[J].应用生态学报,2001,12(6):927-932.
    [35] 王萍,张希吏,石磊.干旱胁迫下沙芥幼苗叶片光合特性和叶绿素荧光参数的变化[J].干旱地区农业研究,2017,35(3):159-163.
    [36] 任磊,赵夏陆,许靖,等.4种茶菊对干旱胁迫的形态和生理响应[J].生态学报,2015,35(15):5131-5139.
    [37] 邬佳宝,马明科,张刚,等.文冠果对干旱胁迫的光合生理响应[J].干旱地区农业研究,2014,32(5):55-60.
    [38] 时丽冉,王玉平,刘国荣,等.干旱胁迫对地被菊光合生理特性及水分利用率的影响[J].河南农业科学,2011,40(3):119-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700