乙酸在方解石表面吸附的密度泛函研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Density functional theory analysis of acetic acid adsorption on CaCO_3(104) surface
  • 作者:柴汝宽 ; 刘月田 ; 杨莉 ; 辛晶 ; 徐万里 ; 马晶
  • 英文作者:CHAI Rukuan;LIU Yuetian;YANG Li;XIN Jing;XU Wanli;MA Jing;State key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum;Development Research Department, China National Offshore Oil Corporation Research Institute;
  • 关键词:密度泛函理论 ; CaCO3(104)表面 ; 乙酸 ; 吸附机理
  • 英文关键词:density functional theory;;CaCO3(104) surface;;acetic acid;;adsorption mechanism
  • 中文刊名:ZNGD
  • 英文刊名:Journal of Central South University(Science and Technology)
  • 机构:中国石油大学(北京)油气资源与探测国家重点实验室;中海油研究总院开发研究院;
  • 出版日期:2019-05-26
  • 出版单位:中南大学学报(自然科学版)
  • 年:2019
  • 期:v.50;No.297
  • 基金:国家科技重大专项(2017ZX05032004-002);; 国家重点基础研究发展规划(973计划)项目(2015CB250905);; 中国石油重大科技专项(2017E-0405)~~
  • 语种:中文;
  • 页:ZNGD201905030
  • 页数:11
  • CN:05
  • ISSN:43-1426/N
  • 分类号:246-256
摘要
为了探究乙酸在方解石表面的吸附机理,利用密度泛函方法研究乙酸的反应活性特征及其在CaCO_3(104)表面吸附过程中的电子转移以及化学键形成特征。研究结果表明:乙酸前线轨道主要分布于乙酸中重原子之上,其中O_((1))原子为反应活性中心;乙酸在CaCO_3(104)表面的最稳定吸附位处于穴位和短桥位之间即2个Ca原子之间;乙酸以解离态吸附,其中乙酸根趋向于以双齿桥键合模式吸附于CaCO_3(104)表面,H_((4))原子与CaCO_3(104)表面O_((3))原子形成羟基;乙酸与CaCO_3(104)表面之间存在电子的转移和化学键的形成,其中Ca_((1))—O_((1))和Ca_((2))—O_((2))形成离子键,H_((4))—O_((3))形成共价键,H_((4))—O_((2))形成氢键。
        To explore the adsorption mechanism of acetic acid on CaCO_3(104)surface,the active sites of acetic acid,the electron transfer and chemical bond formation during the adsorption process were studied using density functional methods.The results show that the frontier orbital of acetic acid distributes over the heavy atom,in which O_((1))atom is the reactive center.The most stable adsorption site is between hollow and short bridge sites,namely between two Ca atoms.The acetic acid is adsorbed in a dissociated state,in which the acetate tends to adsorb on the CaCO_3(104)surface by a bridging bidentate mode and H_((4))tends to form a hydroxyl groups with O_((2))of CaCO_3(104)surface.Meanwhile,there exist transfer of electrons and formation of chemical bonds between the acetic acid and the CaCO_3(104)surface.Among them,Ca_((1))—O_((1))and Ca_((2))—O_((2))form ionic bond,H_((4))—O_((3))forms covalent bonds and H_((4))—O_((2))forms hydrogen bond.
引文
[1]AGUSTIN D A,MAURICIO M D,OSCAR G A,et al.Experimental-theoretical approach to the adsorption mechanisms for anionic,cationic,and zwitterionic surfactants at the calcitewater interface[J].Langmuir,2016,32(11):2608-2616.
    [2]RICCI M,SEGURA J J.ERICKSON B W,et al.Growth and dissolution of calcite in the presence of adsorbed stearic acid[J].Langmuir,2015,31(27):7563-7571.
    [3]张国范,张佰发,石晴.油酸钠在闪锌矿表面的吸附机理[J].中南大学学报(自然科学版),2017,48(1):16-24.ZHANG Guofan,ZHANG Baifa,SHI Qing.Adsorption mechanism of sphalerite by sodium oleate[J].Journal of Central South University(Science and Technology),2017,48(1):16-24.
    [4]UKRAINCZYK M,GREDICAK M,JERIC I,et al.Interactions of salicylic acid derivatives with calcite crystals[J].Journal of Colloid and Interface Science,2012,365(1):296-307.
    [5]SAND K K,STIPP S L S.The interaction of ethanol and water with the{10.4}surface of calcite[J].Langmuir,2010,26(18):14520-14529.
    [6]KARIMI M,MAHMOODI M,NIAZI A,et al.Investigating wettability alteration during MEOR process,a micro/macro scale analysis[J].Colloids Surf B Biointerfaces,2012,95:129-136.
    [7]SUBHAYU B,SHARMA M M.Investigating the role of crude-oil components on wettability alteration using atomic force microscopy[J].SPE Journal,1997,4(3):235-241.
    [8]LIU Fanghui,YANG Hui,WANG Jingyao,et al.Salinitydependent adhesion of model molecules of crude oil at quartz surface with different wettability[J].Fuel,2018,223:401-407.
    [9]王业飞,徐怀民,齐自远,等.原油组分对石英表面润湿性的影响与表征方法[J].中国石油大学学报(自然科学版),2012,36(5):155-159.WANG Yefei,XU Huaimin,QI Ziyuan,et al.Effects of crude fractions on quartz surface wettability and characterization method[J].Journal of China University of Petroleum(Edition of Natural Science),2012,36(5):155-159.
    [10]陈晨,董朝霞,高玉莹,等.盐水组成对极性组分在石英表面吸附的影响[J].石油学报,2017,38(2):217-226.CHEN Chen,DONG Zhaoxia,GAO Yuyin,et al.Effects of brine composition on quartz surface absorption of polar components[J].Acta Petrolei Sinica,2017,38(2):217-226.
    [11]王进明,王毓华,余世磊,等.十二烷基硫酸钠对黄锑矿浮选行为的影响及作用机理[J].中南大学学报(自然科学版),2013,44(10):3955-3962.WANG Jinming,WANG Yuhua,YU Shilei,et al.Flotation behavior and mechanism of cervantite with sodium dodecyl sulfate[J].Journal of Central South University(Science and Technology),2013,44(10):3955-3962.
    [12]TORRES A,AMAYA S J,RODRIGUEZ R E,et al.Adsorption of prototypical asphaltenes on silica:First-Principles DFTsimulations including dispersion corrections[J].Journal of Physical Chemistry B,2018,122(2):618-624.
    [13]LAZAR P,KARLICKY F,JURECKA P,et al.Adsorption of small organic molecules on graphene[J].Journal of American Chemical Society,2013,135(16):6372-6377.
    [14]PAVLOVA T V,ZHIDOMIROV G M,ELTSOY K N.FirstPrinciple study of phosphine adsorption on Si(001)-2×1-Cl[J].Journal of Physical Chemistry C,2018,122(3):1741-1745.
    [15]龙朝辉,丁静,邓博华,等.锂离子电池负极材料NiSi2嵌锂性质的第一性原理研究[J].中南大学学报(自然科学版),2018,49(2):323-329.LONG Chaohui,DING Jing,DENG Bohua,et al.First-principle study of Li-insertion properties of NiSi2 as anode materials for lithium-ion batteries[J].Journal of Central South University(Science and Technology),2018,49(2):323-329.
    [16]COSTA D,RIBEIRO T,CORNETTE P,et al.DFT Modeling of corrosion inhibition by organic molecules:carboxylates as inhibitors of aluminum corrosion[J].Journal of Physical Chemistry C,2016,120(50):28607-28616.
    [17]SANCHEZ V M,MIRANDA C R.Modeling acid oil component interactions with carbonate reservoirs:A First-Principles view on low salinity recovery mechanisms[J].Journal of Physical Chemistry C,2014,118(33):19180-19187.
    [18]ALVIM R S,LIMA F C D A,SANCHEZ V M,et al.Adsorption of asphaltenes on the calcite(10.4)surface by first-principles calculations[J].RSC Advances,2016,6(97):95328-95336.
    [19]ATAMAN E,ANDERSSON M P,CECCATO M,et al.Functional group adsorption on calcite:I.oxygen containing and nonpolar organic molecules[J].Journal of Physical Chemistry C,2016,120(30):16586-16596.
    [20]ATAMAN E,ANDERSSON M P,CECCATO M,et al.Functional group adsorption on calcite:II.nitrogen and sulfur containing organic molecules[J].Journal of Physical Chemistry C,2016,120(30):16597-16607.
    [21]PACHECO-KATO J C,DEL-CAMPO J M,GAZQUEZC J L,et al.A PW91-like exchange with a simple analytical form[J].Chemical Physics Letters,2016,651:268-273.
    [22]HANSEL R A,BROCKA C N,PAIKOFF B C,et al.Automated generation of highly accurate,efficient and transferable pseudopotentials[J].Computer Physics Communications,2015,196:267-275.
    [23]MEDEIROS S K,ALBUQUERQUE E L,MAIA F F,et al.Electronic and optical properties of CaCO3 calcite,and excitons in Si@CaCO3 and CaCO3@SiO2 core-shell quantum dots[J].Journal of Physics D Applied Physics,2007,40(18):5747-5752.
    [24]REEDER R J.Crystal chemistry of the rhombohedral carbonates[J].Reviews in Mineralogy&Chemistry,1983,11:1-48.
    [25]JONES R E,TEMPLETON D H.The crystal structure of acetic acid[J].Acta Crystallographica,2010,16(7):657-661.
    [26]COCKS I D,GUO Q,PATEL R,et al.The structure of TiO2(110)(1×1)and(1×2)surfaces with acetic acid adsorption:A PESstudy[J].Surface Science,1997,390(1):135-139.
    [27]SILVERSTRI A,BUDI A,ARTAMAN E,et al.A quantum mechanically derived force field to predict CO2 adsorption on calcite{10.4}in an aqueous environment[J].Journal of Physical Chemistry C,2017,121(43):24025-24035.
    [28]CHEN H,PANAGIOTOPOULOS A Z,GIANNELIS E P.Atomistic molecular dynamics simulations of carbohydratecalcite interactions in concentrated brine[J].Langmuir,2015,31(8):2407-2413.
    [29]柴汝宽,刘月田,王俊强,等.第一性原理研究H2O分子在CaCO3(104)表面吸附[J].原子与分子物理学报,2018,35(6):1075-1082.CHAI Rukuan,LIU Yuetian,WANG Junqiang,et al.First principles study on the adsorption of H2O molecule on CaCO3(104)surface[J].Journal of Atomic and Molecular Physics,2018,35(6):1075-1082.
    [30]METHFESSEL M,PAXTON A T.High-precision sampling for Brillouin-zone integration in metals[J].Physical Review B,1989,40(6):3616-3621.
    [31]KOVACEVIC N,KOKALJ A.DFT study of interaction of azoles with Cu(111)and Al(111)surface:role of azole nitrogen atoms and dipole-dipole interactions[J].Physical Chemistry C,2011,115(49):24189-24197.
    [32]吴刚,郝宁眉,廉兵杰,等.吡啶类缓蚀剂及其在AI(111)表面吸附行为的密度泛函理论分析[J].化工学报,2013,64(7):2565-2572.WU Gang,HAO Ningmei,LIAN Bingjie,et al.Density functional theory analysis on pyridine corrosion inhibitors and adsorption behavior on AI(111)surface[J].Journal of Chemical Industry and Engineering(China),2013,64(7):2565-2572.
    [33]MENDIZABAL F,CONTRERAS R R,AIZMAN A J.Introduction of external field effects in the frontier molecular orbital theory of chemical reactivity[J].International Journal of Quantum Chemistry,1992,44(S26):751-760.
    [34]INAGAKI S,FUJIMOTO H,FUKUI K.Chemical pseudoexcitation and paradoxical orbital interaction effect[J].Journal of American Chemical Society,1975,97(21):6108-6116.
    [35]LI Yan,Evans J N S.The fukui function:A key concept linking frontier molecular orbital theory and the hard-soft-acid-base principle[J].Journal of American Chemical Society,1995,117(29):7756-7759.
    [36]HUZINAGA S,NARITA S.Mulliken population analysis and point charge model of molecules[J].Israel Journal of Chemistry,2013,19(1/2/3/4):242-254.
    [37]HEREMANS J P,JOVOVIC V,TOBERER E S,et al.Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J].Science,2008,321(5888):554-557.
    [38]TSIRELSON V,STASH A.Determination of the electron localization function from electron density[J].Chemical Physics Letters,2002,351(1):142-148.
    [39]王鑫洋,陈念科,王学鹏,等.物理截断与电子局域函数结合法研究非晶态结构中的原子成键[J].物理学报,2016,65(17):173101-1-173101-6.WANG Xinyang,CHEN Nianke,WANG Xuepeng,et al.Bonding nature of the amorphous structure studied by a combination of cutoff and electronic localization function[J].Acta Physica Sinica,2016,65(17):173101-1-173101-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700