MEMS固体波动陀螺谐振子现状及发展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Status and Development of MEMS Solid Wave Gyroscope Resonators
  • 作者:易剑 ; 江南 ; 庄须叶 ; 郭述文 ; 张军安
  • 英文作者:Yi Jian;Jiang Nan;Zhuang Xuye;Guo Shuwen;Zhang Jun'an;Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences;East China Institute of Photo-Electronic IC;Micro-Nano Sensor Technology Research Center,Soochow University;Ningbo CrysDiam Industrial Technology Co.Ltd.;
  • 关键词:微机电系统(MEMS) ; 固体波动陀螺仪 ; 超高Q值 ; 单晶金刚石 ; 3D超精密加工
  • 英文关键词:micro-electromechanical system(MEMS);;solid wave gyroscope;;ultra-high Q value;;single crystal diamond;;3D ultra-precision machining
  • 中文刊名:BDTQ
  • 英文刊名:Micronanoelectronic Technology
  • 机构:中国科学院宁波材料技术与工程研究所;华东光电集成器件研究所;苏州大学微纳传感技术研究中心;宁波晶钻工业科技有限公司;
  • 出版日期:2018-09-11
  • 出版单位:微纳电子技术
  • 年:2018
  • 期:v.55;No.497
  • 基金:科技部国际合作项目(2015DFA50760);; 中国科学院院重点部署项目(KFZD-SW-409)
  • 语种:中文;
  • 页:BDTQ201810007
  • 页数:8
  • CN:10
  • ISSN:13-1314/TN
  • 分类号:41-48
摘要
提高微机电系统(MEMS)固体波动陀螺仪性能的一个根本技术就是高品质因数(Q值)技术,分析了现有陀螺仪常用敏感元件(谐振子)和材料(熔融石英和硅等)的优缺点,发现要想进一步提高谐振子的Q值,除了优化谐振子的结构以外,最重要的还是提高谐振子材料本身的Q值。与现有的谐振子材料相比,单晶金刚石(SCD)具有更高的优质因数(材料固有频率×Q值),将是新一代MEMS固体波动陀螺谐振子材料的首选,而单晶金刚石MEMS固体波动陀螺仪将是未来惯性与制导领域争夺的制高点。依据国内外MEMS固体波动陀螺仪的研究现状,预测了未来高端MEMS固体波动陀螺仪的发展方向,总结了国内现有的大尺寸高品质器件级单晶金刚石的制备和加工现状。
        One of the fundamental technologies for improving the performance of the micro-electromechanical system(MEMS)solid wave gyroscope is the high-quality factor(Qvalue)technology.The advantages and disadvantages of the current sensing elements(resonators)and materials(fused quartz,silicon,etc)commonly used for the gyroscope are analyzed.It is found that in order to further improve the Qvalue of the resonator,the increase of the Qvalue of the resonator material itself is the most important except for the optimization of the structure of the resonator.The single crystal diamond(SCD)has a higher factor of merit(inherent frequency of the material×Qvalue)than existing resonator materials,and will be the first choice for the resonator materials of a new generation of the MEMS solid wave gyroscope.And the SCD MEMS solid wave gyroscope will be the commanding heights for future competition in the inertial and guidance fields.According to the overseas and domestic research status of the MEMS solid wave gyroscope,the development trend of the high-end MEMS solid wave gyroscope in future is prospected,and the current status of the preparation and processing of domestic large-size and highquality device grade SCD is summarized.
引文
[1]薛连莉,陈少春,陈效真.2016年国外惯性技术发展与回顾[J].导航与控制,2017,16(3):105-112.
    [2]江城,张嵘.美国Micro-PNT发展综述[C]//第六届中国卫星导航学术年会.中国,西安,2015:1-9.
    [3]权海洋,杨栓虎,陈效真,等.高端MEMS固体波动陀螺的发展与应用[J].导航与控制,2017,16(6):74-82.
    [4]潘瑶,曲天良,杨开勇,等.半球谐振陀螺研究现状与发展趋势[J].导航定位与授时,2017,4(2):9-13.
    [5]汪红兵,林丙涛,梅松,等.微半球谐振陀螺技术研究进展[J].微纳电子技术,2017,(11):772-780.
    [6]AHAMED M J,SENKAL D,SHKEL A M.Effect of annealing on mechanical quality factor of fused quartz hemispherical resonator[C]//Proceedings of the IEEE International Symposium on Inertial Sensors and Systems.Laguna Beach,CA,USA,2014:1-4.
    [7]FRANCA D R,BLOUIN A.All-optical elastic characterization of silicon wafers and cantilever beams by vibration modes[C]//Proceedings of the AIP Conference.Brunswick,Maine,USA,2006:1585-1592.
    [8]JIANG X,REICHELT K,STRITZKER B.The hardness and Young's modulus of amorphous hydrogenated carbon and silicon films measured with an ultralow load indenter[J].Journal of Applied Physics,1989,66(12):5805-5808.
    [9]SUWITO W,DUNN M L,CUNNUNGHAM S J,et al.Elastic moduli,strength,and fracture initiation at sharp notches in etched single crystal silicon microstructures[J].Journal of Applied Physics,1999,85(7):3519-3534.
    [10]LANGLOIS W E.A parameter sensitivity study for Czochralski bulk flow of silicon[J].Journal of Crystal Growth,1982,56(1):15-19.
    [11]LYON K G,SALINGER G L,SWENSON C A,et al.Linear thermal expansion measurements on silicon from 6 to 340 K[J].Journal of Applied Physics,1977,48(3):865-868.
    [12]SLACK G A.Thermal conductivity of pure and impure silicon,silicon carbide,and diamond[J].Journal of Applied Physics,1964,35(12):3460-3466.
    [13]BEAKE B D,SMITH J F.High-temperature nanoindentation testing of fused silica and other materials[J].Philosophical Magazine:A,2002,82(10):2179-2186.
    [14]HILLIG W B.Strength of bulk fused quartz[J].Journal of Applied Physics,1961,32(4):741.
    [15]FINE M E,DUYNE H V,KENNEY N T.Low-temperature internal friction and elasticity effects in vitreous silica[J].Journal of Applied Physics,1954,25(3):402-405.
    [16]HAHN T A,KIRBY R K.Thermal expansion of fused silica from80 to 1 000 K-standard reference material 739[S].1972.
    [17]COMBIS P,CORMONT P,GALAIS L,et al.Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations[J].Applied Physics Letters,2012,101(21):3221-2616.
    [18]MPHR M,CARON A,ENGEL P H,et al.Young's modulus,fracture strength,and Poisson's ratio of nanocrystalline diamond films[J].Journal of Applied Physics,2014,116(12):051101-1-051101-9.
    [19]CATLEDGE S A,BORHAM J,VOHRA Y K,et al.Nanoindentation hardness and adhesion investigations of vapor deposited nanostructured diamond films[J].Journal of Applied Physics,2002,91(8):5347-5352.
    [20]PICKRELL D J,KLINE K A,TAYLOR R E,et al.Thermal expansion of polycrystalline diamond produced by chemical vapor deposition[J].Applied Physics Letters,1994,64(18):2353-2355.
    [21]BABA K,AIKAWA Y,SHOHATA N.Thermal conductivity of diamond films[J].Journal of Applied Physics,1991,69(10):7313-7315.
    [22]MIGLIORI A,LEDBETTER H,LEISURE R G,et al.Diamond's elastic stiffnesses from322 K to 10 K[J].Journal of Applied Physics,2008,104(5):053512-1-053512-4.
    [23]SUMIYA H.Super-hard diamond indenter prepared from highpurity synthetic diamond crystal[J].Review of Scientific Instruments,2005,76(2):026112-1-026112-3.
    [24]EREMETS M I,TROJAN I A,GWAZE P,et al.The strength of diamond[J].Applied Physics Letters,2005,87(14):214-227.
    [25]STOUPIN S,SHVYDKO Y V.Thermal expansion of diamond at low temperatures[J].Physical Review Letters,2010,104(8):1-4.
    [26]WEI L,KUO P K,THOMAS R L,et al.Thermal conductivity of isotopically modified single crystal diamond[J].Physical Review Letters,1993,70(24):3764-3767.
    [27]HEIDARI A,CHAN M L,YANG H A,et al.Micromachined polycrystalline diamond hemispherical shell resonators[C]//Proceedings of the 17th International Conference on Solid-State Sensors,Actuators and Microsystems.Barcelona,Spain,2013:2415-2418.
    [28]SAITO D,YANG C,HEIDARI A,et al.Microcrystalline diamond cylindrical resonators with quality-factor up to 0.5 million[J].Applied Physics Letters,2016,108(5):1157-1178.
    [29]BERNSTEIN J J,BANCU M G,BAUER J M,et al.High Qdiamond hemispherical resonators:Fabrication and energy loss mechanisms[J].Journal of Micromechanics and Microengineering,2015,25(8):1-12.
    [30]RAY M P,FEYGELSON T I,BUTLER J E,et al.Dissipation in single crystal diamond micromechanical annular plate resonators[J].Diamond&Related Materials,2011,20(8):1204-1207.
    [31]WU H H,SANG L W,TERAJI T,et al.Reducing energy dissipation and surface effect of diamond nanoelectromechanical resonators by annealing in oxygen ambient[J].Carbon,2017,124(11):281-287.
    [32]TAO Y,DEGEN C.Facile Fabrication of single-crystal-diamond nanostructures with ultrahigh aspect ratio[J].Advanced Materials,2013,25(29):3962-3967.
    [33]TAO Y,BOSS J M,MOORES B A,et al.Single-crystal diamond nanomechanical resonators with quality factors exceeding one million[J].Nature Communications,2014,5(4):3638-3641.
    [34]MOLLER J R,KIPFSTUHL L,HEPP C,et al.One-and twodimensional photonic crystal microcavities in single crystal diamond[J].Nature Nanotechnology,2011,7(1):69-74.
    [35]BUREK M J,CHU Y,LIDDY M S,et al.High quality-factor optical nanocavities in bulk single-crystal diamond[J].Nature Communications,2014,5(5):5718-5721.
    [36]OVARTCHAIYAPONG P,PASCAL L M A,MYERS B A,et al.High quality factor single crystal diamond mechanical resonators[J].Applied Physics Letters,2012,101(16):1726-1729.
    [37]SHKEL A M.Precision navigation and timing enabled by microtechnology:are we there yet?[J].Micro-and Nanotechnology Sensors,Systems,and Applications,2011,8031(2):5-9.
    [38]Defense Advanced Research Projects Agency.Precise robust inertial guidance for munitions(PRIGM):navigation-grade inertial measurement unit(NGIMU)-DARPA-BAA-15-33 document[EB/OL].(2015-04-15)[2018-08-27].http://www.cbd-net.com/index.php/search/show/20473142.
    [39]吕继磊.宁波材料所在CVD大块单晶金刚石(克拉级)合成技术方面取得重要进展[EB/OL].(2014-12-01)[2018-06-05].http://www.nimte.ac.cn/news/progress/201412/t20141201_4265590.html.
    [40]王斌.宁波材料所在智能化五轴激光加工设备方面取得进展[EB/OL].(2018-04-02)[2018-06-05].http://www.nimte.ac.cn/news/progress/201804/t20180402_4988870.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700