CEM-UF组合膜-硝化/反硝化系统处理低C/N废水及种群结构分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Low C/N Wastewater Treatment and Structure by the CEM-UF Combined Membrane-Nitrification/Denitrification System
  • 作者:邢金良 ; 张岩 ; 陈昌明 ; 张博康 ; 郭威 ; 马翔山
  • 英文作者:XING Jin-liang;ZHANG Yan;CHEN Chang-ming;ZHANG Bo-kang;GUO Wei;MA Xiang-shan;Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering,Beijing University of Technology;China Metallurgical Industry Panning and Research Institute;
  • 关键词:低C/N废水 ; 氨氮富集 ; 流量比 ; 高通量测序
  • 英文关键词:low C/N wastewater;;NH+4-N enrichment;;flow ratio;;high throughput sequencing
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:北京工业大学水质科学与水环境恢复工程重点实验室;冶金工业规划研究院;
  • 出版日期:2017-09-27 17:26
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(51478015)
  • 语种:中文;
  • 页:HJKZ201803046
  • 页数:8
  • CN:03
  • ISSN:11-1895/X
  • 分类号:384-391
摘要
本研究采用具有氨氮富集分离特性的阳离子交换膜-超滤(CEM-UF)组合膜与硝化/反硝化结合处理低C/N废水,考察该系统不同流量比下低C/N废水的硝化、反硝化脱氮特性,并通过对硝化、反硝化活性污泥进行16Sr DNA高通量测序,分析功能微生物群落结构特征.结果表明,系统进水TN为60 mg·L-1,COD/TN为2.65下,各流量比下硝化均有较好效果,平均氨氮去除率为98.7%,流量比值由1∶2上升到1∶6过程中,反硝化m(COD)/m(NO-3-N)随之升高,1∶6时平均硝氮去除率达到最高,为86.28%,系统总氮去除率由22.56%上升到46.8%.Illumina高通量测序结果表明,硝化污泥中可以固氮的Proteobacteria菌门占30.9%,重要的亚硝酸盐氧化菌Nitrospirae菌门占3.06%,属水平上检测到氨氧化菌(AOB)Nitrosomonas和Nitrosospira,亚硝酸盐氧化菌(NOB)Nitrospira和Nitrobacter,AOB与NOB菌比例较高,与硝化反应器中较好的硝化效果相一致.反硝化污泥中Proteobacteria菌门占主导地位(53.13%),其次是Bacteroidetes菌门(10.93%),在属的水平上检测到Dechloromonas、Thauera、Castellaniella、Alicycliphilus、Azospira、Comamonas、Caldilinea和Saccharibacteria多种具有反硝化脱氮作用的相关菌属,反硝化菌所占比例为25.91%,反硝化污泥中具有反硝化功能的微生物丰富,反硝化效果良好.
        In this study,a CEM-UF composite membrane with ammonia nitrogen enrichment and separation characteristics was combined with nitrification/denitrification to treat low C/N wastewater. The denitrification characteristics of low C/N wastewater at different flow ratios were investigated,and the structural characteristics of functional microbial communities in nitrifying and denitrifying activated sludge were analyzed by 16 Sr DNA high-throughput sequencing. The results showed that influent TN was 60 mg·L-1,COD/TN was 2. 65,the nitrification effect of each flow rate was good,and the average ammonia nitrogen removal rate was 98. 7%. When the flow ratio increased from 1∶ 2 to 1 ∶ 6,the m(COD)/m(NO-3-N) of denitrification was increased,and the removal of average nitrate nitrogen reached its highest level at 1∶ 6,which was 86. 28%,and the removal of total nitrogen increased from 22. 56% to 46. 8%. An analysis of Illumina sequencing showed that nitrogen fixing bacteria Proteobacteria accounted for 30. 9%,and the important nitrite oxidizing bacteria,Nitrospirae,accounted for 3. 06%. At the genus level,Nitrosomonas and Nitrosospira,belonging to the ammonia oxidizing bacteria(AOB) category and Nitrospira and Nitrobacter,belonging to the nitrite oxidizing bacteria(NOB) category were detected. The ratio of AOB and NOB bacteria was high,which is consistent with good nitrification in the nitrification reactor. The dominant bacteria in denitrification sludge were Proteobacteria(53. 13%),followed by Bacteroidetes(10. 93%). A variety of bacteria related to denitrification were detected at the genus level,such as Dechloromonas,Thauera,Castellaniella,Alicycliphilus,Azospira,Comamonas,Caldilinea,and Saccharibacteria. The proportion of denitrifying bacteria was 25. 91% as denitrifying bacteria microbial species were rich in the denitrifying sludge,giving a good denitrification effect.
引文
[1]彭永臻,王建华,陈永志.A2O-BAF联合工艺处理低碳氮比生活污水[J].北京工业大学学报,2012,38(4):590-595.Peng Y Z,Wang J H,Chen Y Z.Treating low carbon and nitrogen ratio sewage with an A2O-BAF system[J].Journal of Beijing University of Technology,2012,38(4):590-595.
    [2]杨高华,章北平,杨群,等.生活污水脱氮的A/O/N工艺和A/O工艺对比实验研究[J].工业用水与废水,2012,43(3):24-27.Yang G H,Zhang B P,Yang Q,et al.Comparative research on A/O/N process and A/O process removing nitrogen from domestic sewage[J].Industrial Water&Wastewater,2012,43(3):24-27.
    [3]Fukumoto Y,Haga K.Advanced treatment of swine wastewater by electrodialysis with a tubular ion exchange membrane[J].Animal Science Journal,2004,75(5):479-485.
    [4]Park W,Jang E,Lee M J,et al.Combination of ion exchange system and biological reactors for simultaneous removal of ammonia and organics[J].Journal of Environmental Management,2011,92(4):1148-1153.
    [5]张岩,陈敬,王修平,等.新型淹没式组合膜的氨氮富集性能[J].环境工程学报,2016,10(7):3391-3395.Zhang Y,Chen J,Wang X P,et al.Ammonia nitrogen enrichment with new submerged composite membrane[J].Chinese Journal of Environmental Engineering,2016,10(7):3391-3395.
    [6]张岩,史扬,张博康,等.新型组合膜工艺不同电极条件下的富集分离性能分析[J].水处理技术,2017,43(1):40-45.Zhang Y,Shi Y,Zhang B K,et al.Analysis of the enrichment and separation performance under different electrode conditions in a new composite membrane process[J].Technology of Water Treatment,2017,43(1):40-45.
    [7]王修平.新型浸没式IEM-MF组合膜-O/A系统脱氮及微生物特性研究[D].北京:北京工业大学,2016.60-70.
    [8]张岩,刘焕光,张中,等.一种膜组件[P].中国专利:CN201310269398.4,2015-07-29.
    [9]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.
    [10]张静,陈洪斌.低碳源污水的脱氮除磷技术研究进展[J].水处理技术,2014,40(1):1-6,15.Zhang J,Chen H B.Review on nitrogen and phosphorus removal technology for low C/N municipal wastewater treatment[J].Technology of Water Treatment,2014,40(1):1-6,15.
    [11]Choi C,Lee J,Lee K,et al.The effects on operation conditions of sludge retention time and carbon/nitrogen ratio in an intermittently aerated membrane bioreactor(IAMBR)[J].Bioresource Technology,2008,99(13):5397-5401.
    [12]Sly L I,Taghavi M,Fegan M.Phylogenetic heterogeneity within the genus Herpetosiphon:transfer of the marine species Herpetosiphon cohaerens,Herpetosiphon nigricans and Herpetosiphon persicus to the genus Lewinella gen.nov.in the Flexibacter-Bacteroides-Cytophaga phylum[J].International Journal of Systematic Bacteriology,1998,48(3):731-737.
    [13]王海燕,周岳溪,戴欣,等.16S r DNA克隆文库方法分析MDAT-IAT同步脱氮除磷系统细菌多样性研究[J].环境科学学报,2006,26(6):903-911.Wang H Y,Zhou Y X,Dai X,et al.Bacterial diversity study for the simultaneous nitrogen and phosphorus removal system(MDAT-IAT)by 16S r DNA cloning method[J].Acta Scientiae Circumstantiae,2006,26(6):903-911.
    [14]王春香,田宝玉,吕睿瑞,等.西双版纳地区热带雨林土壤酸杆菌(Acidobacteria)群体结构和多样性分析[J].微生物学通报,2010,37(1):24-29.Wang C X,Tian B Y,Lv R R,et al.Distribution and diversity of Acidobacteria in tropical rain forest soil of Xishuangbanna[J].Microbiology China,2010,37(1):24-29.
    [15]乔江涛,郭荣波,袁宪正,等.玉米秸秆厌氧降解复合菌系的微生物群落结构[J].环境科学,2013,34(4):1531-1539.Qiao J T,Guo R B,Yuan X Z,et al.Phylogenetic analysis of methanogenic corn stalk degrading microbial communities[J].Environmental Science,2013,34(4):1531-1539.
    [16]Burrell P,Keller J,Blackall L L.Characterisation of the bacterial consortium involved in nitrite oxidation in activated sludge[J].Water Science and Technology,1999,39(6):45-52.
    [17]Lee H W,Lee S Y,Lee J W,et al.Molecular characterization of microbial community in nitrate-removing activated sludge[J].FEMS Microbiology Ecology,2002,41(2):85-94.
    [18]Feng C J,Zhang Z J,Wang S M,et al.Characterization of microbial community structure in a hybrid biofilm-activated sludge reactor for simultaneous nitrogen and phosphorus removal[J].Journal of Environmental Biology,2013,34(2S):489-499.
    [19]Utker J B,Nes I F.A qualitative evaluation of the published oligonucleotides specific for the 16S rRNA gene sequences of ammonia-oxidizing bacteria[J].Systematic and Applied Microbiology,1998,21(1):72-88.
    [20]肖晶晶,郭平,霍炜洁,等.反硝化微生物在污水脱氮中的研究及应用进展[J].环境科学与技术,2009,32(12):97-102.Xiao J J,Gou P,Huo W J,et al.Application of denitrifying microbes to wastewater denitrification[J].Environmental Science&Technology,2009,32(12):97-102.
    [21]Heylen K,Gevers D,Vanparys B,et al.The incidence of nir S and nir K and their genetic heterogeneity in cultivated denitrifiers[J].Environmental Microbiology,2006,8(11):2012-2021.
    [22]方晶晶,马传明,刘存富.反硝化细菌研究进展[J].环境科学与技术,2010,33(S1):206-210,264.Fang J J,Ma C M,Liu C F.The advance of study on denitrifying bacteria[J].Environmental Science&Technology,2010,33(S1):206-210,264.
    [23]肖可可,周律,贺北平,等.城市污水A2/O移动床生物膜工艺菌群结构分析[J].中国给水排水,2016,32(9):20-24,29.
    [24]Coates J D,Chakraborty R,Lack J G,et al.Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas[J].Nature,2001,411(6841):1039-1043.
    [25]Pang C M,Liu W T.Community structure analysis of reverse osmosis membrane biofilms and the significance of Rhizobiales bacteria in biofouling[J].Environmental Science&Technology,2007,41(13):4728-4734.
    [26]Nam J H,Ventura J R S,Yeom I T,et al.A novel perchlorateand nitrate-reducing bacterium,Azospira sp.PMJ[J].Applied Microbiology and Biotechnology,2016,100(13):6055-6068.
    [27]Hao R X,Meng C C,Li J B.An integrated process of threedimensional biofilm-electrode with sulfur autotrophic denitrification(3DBER-SAD)for wastewater reclamation[J].Applied Microbiology and Biotechnology,2016,100(16):7339-7348.
    [28]Kragelund C,Thomsen T R,Mielczarek A T,et al.Eikelboom's morphotype 0803 in activated sludge belongs to the genus Caldilinea in the phylum Chloroflexi[J].FEMS Microbiology Ecology,2011,76(3):451-462.
    [29]Kindaichi T,Yamaoka S,Uehara R,et al.Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge[J].FEMS Microbiology Ecology,2016,92(6):fiw078.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700