水平井压裂单缝和多分支缝中携砂液流动规律数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Proppant-Laden Fluid Flow in Single Fracture and Branch Fractures of Horizontal Well
  • 作者:李剑辉 ; 朱维耀 ; 岳明 ; 张启涛
  • 英文作者:LI Jian-hui;ZHU Wei-yao;YUE Ming;ZHANG Qi-tao;School of Civil and Resource Engineering,University of Science & Technology Beijing;
  • 关键词:水平井 ; 单裂缝 ; 分支缝 ; 携砂液 ; 数值模拟 ; 两相流
  • 英文关键词:horizontal well;;single fracture;;branch fractures;;proppant-laden fluid;;numerical simulation;;two phase flow
  • 中文刊名:KXJS
  • 英文刊名:Science Technology and Engineering
  • 机构:北京科技大学土木与资源工程学院;
  • 出版日期:2018-08-08
  • 出版单位:科学技术与工程
  • 年:2018
  • 期:v.18;No.455
  • 基金:中央高校基本科研业务费专项资金(FRF-TP-17-027A2)资助
  • 语种:中文;
  • 页:KXJS201822005
  • 页数:9
  • CN:22
  • ISSN:11-4688/T
  • 分类号:43-51
摘要
压裂过程中携砂液的注入是为了防止地应力将已压裂出的裂缝重新闭合,裂缝中携砂液的流动是典型的固液两相流。关于垂直井裂缝中携砂液的流动已有众多学者对其进行了研究,然而关于水平井单裂缝和分支缝中携砂液流动的二维或三维数值模拟几乎未见研究。采用混合物湍流计算模型,对携砂液在二维水平井单裂缝和三维水平井分支缝中的流动进行了模拟计算。模拟结果得出:水平井单裂缝中的铺砂形态与垂直井单裂缝中明显不同,水平井单裂缝中的铺砂前缘会形成一个"砂包"向前推进,并且在入口处向缝内展布的铺砂浓度不会快速地下降。在保持其他参数不变的情况下,随着携砂液入口速度的增大,裂缝中的铺砂高度逐渐增大;携砂液入口颗粒浓度越大其他位置的铺砂浓度也越大;携砂液颗粒密度越大铺砂分布范围越小,而铺砂浓度大小基本相同。楔形裂缝中的携砂液相较于矩形裂缝更容易填充满整个裂缝;楔形裂缝中向前推进的"砂包"比矩形裂缝较低。分支缝主缝中砂堤区厚度大于单缝中的厚度,而分支缝主缝中悬浮区的厚度远小于单缝中的厚度。随着支缝与主缝夹角的增大,分支缝主缝中铺砂范围逐渐减小。当夹角为90°、120°时,沙粒在支缝与主缝的连接处产生堆积,导致主缝在第一个连接处后方区域的铺砂浓度明显减小。
        In the process of fracturing,the injection of proppant-laden fluid is to prevent the ground stress from re-closing the cracks that have been fractured. The flow of proppant-laden fluid in the fracture is a typical solid-liquid two phase flow. Many researchers have studied the flow of proppant-laden fluid in fractures of vertical wells.However,there are few researches on the two-dimensional or three-dimensional numerical simulation of proppantladen fluid flow in single fracture and branch fractures of horizontal well. The mixture turbulence model is used to simulate the flow of proppant-laden fluid in single fracture in two-dimensional space and branch fractures of horizontal well in three-dimensional space. It is concluded that the shape of sand in the single fracture of horizontal well is obviously different from that in the single fracture of vertical well. A "sand pack"is formed and pushed forward in the single fracture of horizontal well. The sand concentration does not decrease rapidly at the entrance. As the inlet speed increases,the height of the sand in the fracture gradually increases. The greater the inlet particle concentration,the greater the sand concentration at other locations. The larger the particle density,the smaller the spreading range of sand. There is no significant relationship between sand concentration and particle density. The proppantladen fluid in the wedge fracture is easier to fill the entire fracture than that in the rectangular fracture. The position of "sand pack"in the wedge fracture is lower than that in the rectangular fracture. The sand embankment thickness in the main fracture of branch fractures is bigger than the thickness in the single fracture. While the thickness of the suspension zone in the main fracture of branch fractures is much smaller than the thickness in the single fracture.With the increase of the angle between the branch fracture and the main fracture of branch fractures,the scope of the sand in the main fracture gradually decreases. When the angle is 90° and 120°,the sand accumulates at the junction of the branch fracture and the main fracture,which leads to a significant decrease of sand concentration in the area behind the first joint of the main fracture.
引文
1黄玉珍,黄金亮,葛春梅,等.技术进步是推动美国页岩气快速发展的关键.天然气工业,2009;29(5):8-10Huang Yuzhen,Huang Jinliang,Ge Chunmei,et al.A key factor promoting rapid development of shale gas in America:Technical progress.Natural Gas Industry,2009;29(5):8-10
    2唐颖,唐玄,王广源,等.页岩气开发水力压裂技术综述.地质通报,2011;30(增刊1):393-399Tang Ying,Tang Xuan,Wang Guangyuan,et al.Summary of hydraulic fracturing technology in shale gas development.Geological Bulletin of China,2011;30(S1):393-399
    3张东晓,杨婷云.页岩气开发综述.石油学报,2013;34(4):792-801Zhang Dongxiao,Yang Tingyun.An overview of shale-gas production.Acta Petrolei Sinica,2013;34(4):792-801
    4王建国,徐能惠,杜学斌.页岩气开发现状及关键技术研究.重型机械,2014;(6):31-35Wang Jianguo,Xu Nenghui,Du Xuebin.Research on status and key technology of shale gas development.Heavy Machinery,2014;(6):31-35
    5纪国法,张公社,许冬进,等.页岩气体积压裂支撑裂缝长期导流能力研究现状与展望.科学技术与工程,2016;16(14):78-88Ji Guofa,Zhang Gongshe,Xu Dongjin,et al.Research and prospect of long-term fracturing conductivity in volumetric fracturing for shale gas reservoir.Science Technology and Engineering,2016;16(14):78-88
    6胡智凡,卢渊,伊向艺,等.单层铺砂条件下支撑剂嵌入深度对裂缝导流能力影响实验研究.科学技术与工程,2014;14(5):232-234Hu Zhifan,Lu Yuan,Yi Xiangyi,et al.Under the condition of single sanding closure pressure affecting proppant embed depth study.Science Technology and Engineering,2014;14(5):232-234
    7 Maxwell S C,Urbancic T,Steinsberger N,et al.Microseismic imaging of hydraulic fracture complexity in the Barnett Shale.SPE Annual Technical Conference and Exhibition.Richardson:Society of Petroleum Engineers,2002:SPE77440-MS
    8 Fisher M,Wright C,Davidson B,et al.Integrating fracture mapping technologies to improve stimulations in the Barnett Shale.SPE Production&Facilities,2005;20(20):85-93
    9 Cipolla C L,Warpinski N R,Mayerhofer M J,et al.Hydraulic fracture complexity:Diagnosis,remediation,and exploration.SPE Asia Pacific Oil and Gas Conference and Exhibition.Richardson:Society of Petroleum Engineers,2008:SPE-115771-MS
    10张潦源,翟恒立,卢娜娜,等.非牛顿压裂液中支撑剂聚集沉降规律实验研究.科学技术与工程,2013;13(34):10142-10146Zhang Liaoyuan,Zhai Hengli,Lu Na'na,et al.Experimental study on proppant gathered settlement in non-newtonian fracturing fluid.Science Technology and Engineering,2013;13(34):10142-10146
    11孙海成.脆性页岩网络裂缝中支撑剂的沉降特性.油气地质与采收率,2013;(5):107-110,118Sun Haicheng.Study on proppant settlement in brittle shale network fracture.Petroleum Geology and Recovery Efficiency,2013;(5):107-110,118
    12杨尚谕,杨秀娟,闫相祯,等.煤层气水力压裂缝内变密度支撑剂运移规律.煤炭学报,2014;(12):2459-2465Yang Shangyu,Yang Xiujuan,Yan Xiangzhen,et al.Variable density proppant placement in CBM wells fractures.China Coal Journal,2014;(12):2459-2465
    13温庆志,罗明良,李加娜,等.压裂支撑剂在裂缝中的沉降规律.油气地质与采收率,2009;(3):100-103,118Wen Qingzhi,Luo Mingliang,Li Jia'na,et al.Settlement regularity of fracturing proppant in fracture.Petroleum Geology and Recovery Efficiency,2009;(3):100-103,118
    14温庆志,翟恒立,罗明良,等.页岩气藏压裂支撑剂沉降及运移规律实验研究.油气地质与采收率,2012;(6):104-107,118Wen Qingzhi,Zhai Hengli,Luo Mingliang,et al.Study on proppant settlement and transport rule in shale gas fracturing.Petroleum Geology and Recovery Efficiency,2012;(6):104-107,118
    15李靓.压裂缝内支撑剂沉降和运移规律实验研究.成都:西南石油大学,2014Li jiang.Study on proppant settlement and transport rule in fracturing.Chengdu:Southwest Petroleum University,2014
    16黄志文,苏建政,龙秋莲,等.基于Fluent软件的携砂液流动规律模拟研究.石油天然气学报,2012;(11):123-125,130,171Huang Zhiwen,Su Jianzheng,Long Qiulian,et al.Numerical simulation on the flowing rules of carrying fluids based on Fluent software.Journal of Oil and Gas Technology,2012;(11):123-125,130,171
    17李鹏,苏建政,张岩,等.单裂缝中携砂液流动规律研究.力学与实践,2017;(2):135-144Li Peng,Su Jianzheng,Zhang Yan,et al.The two phase flow of proppant-laden fluid in a single fracture.Mechanics in Engineering,2017;(2):135-144
    18 Krieger I M,Dougherty T J.A mechanism for non-Newtonian flow in suspensions of rigid spheres.Transactions of the Society of Rheology,1959;3:137-152
    19 Rao R,Mondy L,Sun A,et al.A numerical and experimental study of batch sedimentation and viscous resuspension.International Journal for Numerical Methods in Fluids,2002;39(6):465-483
    20 Subia S R,Ingber M S,Mondy L A,et al.Modelling of concentrated suspensions using a continuum constitutive equation.Journal of Fluid Mechanics,1998;373:193-219
    21 Shokir E M,Al-Quraishi A A.Experimental and numerical investigation of proppant placement in hydraulic fractures.Liquid Fuels Technology,2009;27(15):1690-1703
    22王瀚.水力压裂垂直裂缝形态及缝高控制数值模拟研究.合肥:中国科学技术大学,2013Wang Han.A numerical study on vertical hydraulic fracture configuration and fracture height control.Hefei:University of Science and Technology of China,2013
    23阳友奎,肖长富,邱贤德,等.水力压裂裂缝形态与缝内压力分布.重庆大学学报(自然科学版),1995;(3):20-26Yang Youkui,Xiao Changfu,Qiu Xiande,et al.Fracture geometry and pressure distribution I fracture for hydrofracturing.Journal of Chongqing University(Natural Science Edition),1995;(3):20-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700