南海及周缘地区地幔组成和动力学的岩石地球化学制约
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Petrogeochemical Constraints on Compositions and Dynamics of the Mantle in the South China Sea and Adjacent Areas
  • 作者:赵智华 ; 张国良 ; 王帅 ; 张吉
  • 英文作者:ZHAO Zhi-hua;ZHANG Guo-liang;WANG Shuai;ZHANG Ji;Institute of Oceanology, Chinese Academy of Sciences;Qingdao National Laboratory for Marine Science and Technology;University of Chinese Academy of Sciences;Center for Ocean Mega-Science, Chinese Academy of Sciences;
  • 关键词:玄武岩 ; 地幔 ; 辉石岩 ; 碳酸盐化火山岩 ; 南海
  • 英文关键词:basalt;;mantle;;pyroxenite;;carbonated volcanic rocks;;the South China Sea
  • 中文刊名:KYDH
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:中国科学院海洋研究所;青岛海洋科学与技术国家实验室;中国科学院大学;中国科学院海洋大科学中心;
  • 出版日期:2019-03-10
  • 出版单位:矿物岩石地球化学通报
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金资助项目(91858206,41876040);; 青岛海洋科学与技术国家实验室-海洋地质过程与环境功能实验室创新团队建设项目(MGQNLM-TD201806)
  • 语种:中文;
  • 页:KYDH201902010
  • 页数:15
  • CN:02
  • ISSN:52-1102/P
  • 分类号:64-76+111+249
摘要
南海及其周边(包括雷州半岛、海南岛、印支半岛)广泛分布新生代以来形成的板内玄武岩(弥散火成岩省),本文搜集了该区已发表的新生代玄武岩的地球化学数据并据此进行了总结分析。结果显示,该区板内火山岩主要分为拉斑玄武岩和碱性玄武岩两个系列,其微量元素组成为典型的洋岛玄武岩(OIB)特征。Sr-Nd-Pb-Hf同位素结果指示其源区为亏损地幔端元(DMM)与富集端元(EM2)二端元混合。总体上,相对橄榄岩源区形成的熔体而言,这些玄武岩具有低的CaO、较高的Fe/Mn、Zn/Mn及Zn/Fe值;同时,南海海盆玄武岩、海南岛和印支半岛玄武岩中的橄榄石斑晶相对典型地幔橄榄岩部分熔融形成的玄武岩橄榄石斑晶具有低的Ca和Mn含量,以及高的Ni含量和Fe/Mn值,显示其源区辉石岩组分含量较高。南海停止扩张后出现碳酸盐化火山岩并在地球化学上表现为向碱性玄武岩连续转化,同时海南岛和印支半岛的新生代玄武岩整体具有低于亏损橄榄岩地幔的Mg同位素组成,这些都表明南海及周缘地区的地幔源区中有俯冲板块带入的沉积碳酸盐混入。综上认为,该弥散火成岩省在地幔源区组成上均体现有"俯冲-再循环"组分的加入,该再循环地幔组分可能与该地区长期俯冲滞留板块的重熔有关。
        In the South China Sea(SCS) and adjacent areas, including the Hainan Island, Leizhou Peninsula, and Indochina Peninsula, intraplate basalt formed since the Cenozoic era are extensively and voluminously distributed. Thus, the SCS and adjacent areas were believed in a diffuse igneous province. In this paper, the published geochemical data of Cenozoic basalts in the province have been collected, cleared up, and analyzed in detail. The results show that those Cenozoic intraplate basalts in the province are mainly classified into the tholeiite and alkali basalt two series with typical OIB-like characteristics in the primitive mantle-normalized trace-element patterns. The characteristics of Sr-Nd-Pb-Hf isotopes display that the mantle source of the intraplate basalt samples is a mixture of the depleted mantle(DMM) and enriched mantle(EM2). In general, comparing to the melt derived from the peridotite source, these basalts are characterized with low CaO concentration but high Fe/Mn, Zn/Mn and Zn/Fe ratios. Moreover, olivine phenocrysts of the basalts in the SCS, Hainan Island,and Indochina Peninsula have lower Ca and Mn contents but higher Ni contents and Fe/Mn ratios than those of the basalt formed by the melt derived from the partial melting of peridotite. These evidences demonstrate that the source of these basalts has relatively high percentage of pyroxenite. Furthermore, the volcanic rocks in the SCS were carbonated after the cessation of the SCS basin extension and continuously transformed toward alkali basalt in their geochemical characteristics. Meanwhile, the Cenozoic basalts in the Hainan Island and Indochina Peninsula have generally lower Mg isotopic compositions than the depleted peridotite mantle. These illustrate that the mantle sources of Cenozoic basalts in the SCS and adjacent areas may contain recycled sedimentary carbonate by the plate subduction. In summary, we consider that the mantle source of Cenozoic basalts in the diffuse igneous province has mixed with "subducted-recycled components", including basaltic oceanic crust and sediment, which could be related to the re-melting of the long-term stranded subduction slab in the area.
引文
Agranier A, Blichert J. 2006. The spectra of isotopic heterogeneities along the mid-Atlantic Ridge. Earth & Planetary Science Letters, 238(1): 96-109
    Ahn H T H, Choi S H, Yu Y, Hieu P T, Hoang N K and Ryu J S. 2018. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam. Lithos, 296: 382-395
    Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123(3): 323-333
    Bizimis M, Salters V J M, Dawson J B. 2003. The brevity of carbonatite sources in the mantle: Evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 145(3): 281-300
    Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the tertiary tectonics of southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328
    Castillo P. 1988. The Dupal anomaly as a trace of the upwelling lower mantle. Nature, 336(6200): 667-670
    Chung S L, Sun S S, Tu K, Chen C H, Lee C Y. 1994. Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: Product of lithosphere-asthenosphere interaction during continental extension. Chemical Geology, 112(1-2): 1-20
    Chung S L, Jahn B M, Chen S J, Lee T, Chen C H. 1995. Miocene basalts in northwestern Taiwan: Evidence for EM-type mantle sources in the continental lithosphere. Geochimica et Cosmochimica Acta, 59(3): 549-555
    Dupré B. and Allègre C J. 1983. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303(5913): 142-146
    Fedorov P I, Koloskov A V. 2005. Cenozoic volcanism of southeast Asia. Petrology, 13(4): 352-380
    Flower M, Tamaki K, Hoang N. 1998. Mantle extrusion: A model for dispersed volcanism and DUPAL-like asthenosphere in East Asia and the Western Pacific. In: Flower M F J, Chung S L, Lo C H, Lee T Y, eds. Mantle Dynamics and Plate Interactions in East Asia. Washington D C: AGU Geodynamics Series, 67-88
    Gale A, Dalton C A, Langmuir C H, Su Y J, Schilling J G. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489-518
    Guo L Z, Shi Y S, Ma R S. 1983. The formation and evolution of Mesozoic and Cenozoic active continental margins and island arcs in the western Pacific. Acta Geol Sin, 57(1):11-21
    Hart S R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309(5971): 753-757
    Herzberg C, Asimow P D. 2008. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochemistry, Geophysics, Geosystems, 9(9): Q09001
    Herzberg C. 2011. Identification of source lithology in the Hawaiian and Canary Islands: Implications for origins. Journal of Petrology, 52(1): 113-146
    Hilde T W C, Uyeda S, Kroenke L. 1977. Evolution of the western Pacific and its margin. Tectonophysics, 38(1-2):145-165
    Ho K S, Chen J C, Juang W S. 2000. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China. Journal of Asian Earth Sciences, 18(3): 307-324
    Ho K S, Chen J C, Lo C H, Zhao H L. 2003. 40Ar-39Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang-Fujian region, SE China: Eruption ages, magma evolution and petrogenesis. Chemical Geology, 197(1-4): 287-318
    Hoang N, Flower M F, Carlson R W. 1996. Major, trace element, and isotopic compositions of Vietnamese basalts: Interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochimica et Cosmochimica Acta, 60(22): 4329-4351
    Hoang N, Flower M. 1998. Petrogenesis of cenozoic basalts from Vietnam: Implication for origins of a ‘diffuse igneous province’. Journal of Petrology, 39(3): 369-395
    Hoàng N, Flower M F J, Chí C T, Xu■n T T. 2013. Collision-induced basalt eruptions at Pleiku and Bu Viet Nam. Journal of Geodynamics, 69: 65-83
    Hoang T H A, Choi S H, Yu Y, Pham T H, Nguyen K H, Ryu J S. 2018. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam. Lithos, 296-299: 382-395
    Hoernle K, Tilton G, Le Bas M J, Duggen S, Garbe-Sch?nberg D. 2002. Geochemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate. Contributions to Mineralogy and Petrology, 142(5): 520-542
    Hofmann A W, Jochum K P, Seufert M, White W M. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letters, 79(1-2): 33-45
    Holloway N H. 1982. North Palawan block, Philippines; Its relation to Asian mainland and role in evolution of South China Sea. AAPG Bulletin, 66(9): 1355-1383
    Huang J, Li S G, Xiao Y L, Ke S, Li W Y, Tian Y. 2015. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochimica et Cosmochimica Acta, 164: 298-317
    Huang J, Xiao Y L. 2016. Mg-Sr isotopes of low-δ26Mg basalts tracing recycled carbonate species: Implication for the initial melting depth of the carbonated mantle in Eastern China. International Geology Review, 58(11): 1350-1362
    Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508
    Jackson M G, Hart S R, Koppers A A P, Staudigel H, Konter J, Blusztajn J, Kurz M, Russell J A. 2007. The return of subducted continental crust in Samoan lavas. Nature, 448(7154): 684-687
    Koszowska E, Wolska A, Zuchiewicz W, Cuong N Q, Pécskay Z. 2007. Crustal contamination of Late Neogene basalts in the Dien Bien Phu Basin, NW Vietnam: Some insights from petrological and geochronological studies. Journal of Asian Earth Sciences, 29(1): 1-17
    Le Roux V, Lee C T A, Turner S J. 2010. Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth’s mantle. Geochimica et Cosmochimica Acta, 74(9): 2779-2796
    Leeman W P, Scheidegger K F. 1977. Olivine/liquid distribution coefficients and a test for crystal-liquid equilibrium. Earth and Planetary Science Letters, 35(2): 247-257
    Lei J S, Zhao D P, Steinberger B, Wu B, Shen F L, Li Z X. 2009. New seismic constraints on the upper mantle structure of the Hainan plume. Physics of the Earth and Planetary Interiors, 173(1-2): 33-50
    Li C F, Xu X, Lin J, Sun Z, Zhu J, Yao Y J, Zhao X X, Liu Q S, Kulhanek D K, Wang J, Song T R, Zhao J F, Qiu N, Guan Y X, Zhou Z Y, Williams T, Bao R, Briais A, Brown E A, Chen Y F, Clift P D, Colwell F S, Dadd K A, Ding W W, Almeida I H, Huang X L, Hyun S, Jiang T, Koppers A A P, Li Q Y, Liu C L, Liu Z F, Nagai R H, Peleo‐Alampay A, Su X, Tejada M L G, Trinh H S, Yeh Y C, Zhang C L, Zhang F, Zhang G L. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983
    Li S G, Yang W, Ke S, Meng X N, Tian H C, Xu L J, He Y S, Huang J, Wang X C, Xia Q K, Yang X Y, Ren Z Y, Wei H Q, Liu Y S, Meng F C, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. National Science Review, 4(1): 111-120
    Li W Y, Teng F Z, Wing B A, Xiao Y L. 2014. Limited magnesium isotope fractionation during metamorphic dehydration in metapelites from the Onawa contact aureole, Maine. Geochemistry, Geophysics, Geosystems, 15(2): 408-415
    Liu J Q, Ren Z, Y, Nichols A R L, Song M S, Qian S P, Zhang Y, Zhao P P. 2015. Petrogenesis of Late Cenozoic basalts from North Hainan Island: Constraints from melt inclusions and their host olivines. Geochimica et Cosmochimica Acta, 152: 89-121
    Liu Y S, Gao S, Kelemen P B, Xu W L. 2008. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochimica et Cosmochimica Acta, 72(9): 2349-2376
    McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253
    McKenzie D, O'Nions R K. 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32(5): 1021-1091
    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224
    Morley C K. 2002. A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics, 347(4): 189-215
    Pertermann M, Hirschmann M M. 2002. Trace-element partitioning between vacancy-rich eclogitic clinopyroxene and silicate melt. American Mineralogist, 87(10): 1365-1376
    Porter K A, White W M. 2009. Deep mantle subduction flux. Geochemistry, Geophysics, Geosystems, 10(12): Q12016
    Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Rudnick R L, ed. The Crust. Oxford: Elsevier, 1-64
    Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochemistry Geophysics Geosystems, 5: 27
    Sedaghatpour F, Teng F Z, Liu Y, Sears D W G, Taylor L A. 2013. Magnesium isotopic composition of the moon. Geochimica et Cosmochimica Acta, 120: 1-16
    Sobolev A V, Hofmann A W, Sobolev S V, Nikogosian I K. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434(7033): 590-597
    Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O, Gurenko A A, Kamenetsky V S, Kerr A C, Krivolutskaya N A, Matvienkov V V, Nikogosian I K, Rocholl A, Sigurdsson I A, Sushchevskaya N M, Teklay M. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823): 412-417
    Stern R J, Bloomer S H. 1992. Subduction zone infancy—Examples from the Eocene Izu-Bonin-Mariana and Jurassic California Arcs. Geol Soc Am Bull, 104(12):1621-1636
    Stracke A, Bizimis M, Salters V J M. 2003. Recycling oceanic crust: Quantitative constraints. Geochemistry, Geophysics, Geosystems, 4(3): 8003
    Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313-345
    Sun W D. 2016. Initiation and evolution of the South China Sea: An overview, Acta Geochimica, 35(3): 215-225
    Tapponnier P, Lacassin R, Leloup P H, Sch?rer U, Zhong D L, Wu H W, Liu X H, Ji S C, Zhang L S, Zhong J Y. 1990. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 343(6257): 431-437
    Taylor B, Hayes D E. 1983. Origin and history of the South China Sea basin. In: Hayes D E, ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington DC: American Geophysical Union, 23-56
    Teng F Z, Wadhwa M, Helz R T. 2007. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle. Earth and Planetary Science Letters, 261(1-2): 84-92
    Teng F Z, Li W Y, Ke S, Marty B, Dauphas N, Huang S C, Wu F Y, Pourmand A. 2010. Magnesium isotopic composition of the earth and chondrites. Geochimica et Cosmochimica Acta, 74(14): 4150-4166
    Teng F Z, Yang W, Rudnick R L, Hu Y. 2013. Heterogeneous magnesium isotopic composition of the lower continental crust: A xenolith perspective. Geochemistry, Geophysics, Geosystems, 14(9): 3844-3856
    Teng F Z, Hu Y and Chauvel C. 2016. Magnesium isotope geochemistry in arc volcanism. Proceedings of the National Academy of Sciences, 113(26): 7082-7087
    Tian H C, Yang W, Li S G, Ke S, Chu Z Y. 2016. Origin of low δ26Mg basalts with EM-I component: Evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochimica et Cosmochimica Acta, 188: 93-105
    Tu K, Flower M F J, Carlson R W, Zhang M, Xie G H. 1991. Sr, Nd, and Pb isotopic compositions of Hainan basalts (South China): Implications for a subcontinental lithosphere dupal source. Geology, 19(6): 567-569
    Tu K, Flower M F J, Carlson R W, Xie G H, Chen C Y, Zhang M. 1992. Magmatism in the South China Basin: 1. Isotopic and trace-element evidence for an endogenous dupal mantle component. Chemical Geology, 97(1-2): 47-63
    Wang S J, Teng F Z, Li S G. 2014a. Tracing carbonate-silicate interaction during subduction using magnesium and oxygen isotopes. Nature Communications, 5: 5328
    Wang S J, Teng F Z, Li S G, Hong J A. 2014b. Magnesium isotopic systematics of mafic rocks during continental subduction. Geochimica et Cosmochimica Acta, 143: 34-48
    Wang X C, Li Z X, Li X H, Li J, Liu Y, Long W G, Zhou J B, Wang F. 2012. Temperature, pressure, and composition of the mantle source region of late cenozoic basalts in Hainan Island, SE Asia: A consequence of a young thermal mantle plume close to subduction zones? Journal of Petrology, 53(1): 177-233
    Wang X C, Li Z X, Li X H, Li J, Xu Y G, Li X H. 2013. Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tectonics. Earth and Planetary Science Letters, 377-378: 248-259
    Willbold M, Stracke A. 2006. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochemistry, Geophysics, Geosystems, 7(4): Q04004
    Xu Y G, Wei J X, Qiu H N, Zhang HH, Huang X L. 2012. Opening and evolution of the South China Sea constrained by studies on volcanic rocks: preliminary results and a research design. Chin Sci Bull, 57(24):3150-3164
    Yan Q S, Shi X F, Wang K S, Bu W R, Xiao L. 2008. Major element, trace element, and Sr, Nd and Pb isotope studies of cenozoic basalts from the South China Sea. Science in China Series D: Earth Sciences, 51(4): 550-566
    Yan Q S, Shi X F, Liu J H, Wang K S, Bu W R. 2010. Petrology and geochemistry of mesozoic granitic rocks from the Nansha micro-block, the South China Sea: Constraints on the basement nature. Journal of Asian Earth Sciences, 37(2): 130-139
    Yan Q S, Shi X F, Castillo P R. 2014. The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: A petrologic perspective. Journal of Asian Earth Sciences, 85: 178-201
    Yan Q S, Castillo P, Shi X F, Wang L L, Liao L, Ren J B. 2015. Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications. Lithos, 218-219: 117-126
    Yan Q S, Shi X F, Metcalfe I, Liu S F, Xu T Y, Kornkanitnan N, Sirichaiseth T, Yuan L, Zhang Y, Zhang H. 2018. Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia. Scientific Reports, 8(1): 2640
    Yang W, Teng F Z, Zhang H F, Li S G. 2012. Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle. Chemical Geology, 328: 185-194
    Yang Z F, Zhou J H. 2013. Can we identify source lithology of basalt? Scientific Reports, 3: 1856
    Yu M M, Yan Y, Huang C Y, Zhang X C, Tian Z X, Chen W H, Santosh M. 2018. Opening of the South China Sea and upwelling of the Hainan plume. Geophysical Research Letters, 45(6): 2600-2609
    Zhang G L, Chen L H, Jackson M G, Hofmann A W. 2017. Evolution of carbonated melt to alkali basalt in the South China Sea. Nature Geoscience, 10(3): 229-235
    Zhang G L, Luo Q, Zhao J, Jackson M G, Guo L S, Zhong L F. 2018a. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea. Earth and Planetary Science Letters, 489: 145-155
    Zhang G L, Sun W D, Seward G. 2018b. Mantle source and magmatic evolution of the dying spreading ridge in the South China Sea. Geochemistry, Geophysics, Geosystems, 19(11): 4385-4399
    Zhang M, Tu K, Xie G H, Flower M F J. 1996. Subduction-modified subcontinental mantle in South China: Trace element and isotope evidence in basalts from Hainan Island. Chinese Journal of Geochemistry, 15(1): 1-19
    Zhou P B, Mukasa S B. 1997. Nd-Sr-Pb isotopic, and major- and trace-element geochemistry of Cenozoic lavas from the Khorat Plateau, Thailand: Sources and petrogenesis. Chemical Geology, 137(3-4): 175-193
    Zhu B Q, Wang H F. 1989. Nd-Sr-Pb isotopic and chemical evidence for the volcanism with MORB-OIB source characteristics in the Leiqiong Area, China. Geochimica, (3): 193-201 (in Chinese)
    Zindler A, Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571
    Zou H B, Fan Q C. 2010. U-Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island. Lithos, 116(1-2): 145-152
    樊祺诚, 孙谦, 李霓, 隋建立. 2004. 琼北火山活动分期与全新世岩浆演化. 岩石学报, 20(3): 533-544
    韩江伟, 熊小林, 朱照宇. 2009. 雷琼地区晚新生代玄武岩地球化学:EM2成分来源及大陆岩石圈地幔的贡献. 岩石学报, 25(12): 3208-3220
    刘建强, 任钟元. 2013. 玄武岩源区母岩的多样性和识别特征: 以海南岛玄武岩为例. 大地构造与成矿学, 37(3): 471-488

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700