基于热棒降温技术的自燃煤堆热迁移行为数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation on thermal migration behavior of spontaneous combustion coal pile based on heat pipe cooling technology
  • 作者:程方明 ; 常助川 ; 李贝 ; 邓军 ; 易欣 ; 马砺
  • 英文作者:CHENG Fang-ming;CHANG Zhu-chuan;LI Bei;DENG Jun;YI Xin;MA Li;College of Safety Science and Engineering,Xi'an University of Science and Technology;Key Laboratory of Western Mine Exploitation and Hazard Prevention,Ministry of Education,Xi'an University of Science and Technology;School of Chemical Machinery and Safety,Dalian University of Technology;
  • 关键词:煤自燃 ; 热棒 ; 数值模拟 ; 温度等值线 ; 温度场
  • 英文关键词:coal spontaneous combustion;;heat pipes;;numerical simulation;;temperature contour;;temperature field
  • 中文刊名:XKXB
  • 英文刊名:Journal of Xi'an University of Science and Technology
  • 机构:西安科技大学安全科学与工程学院;西安科技大学西部矿井开采及灾害防治教育部重点实验室;大连理工大学化工机械与安全学院;
  • 出版日期:2019-07-31
  • 出版单位:西安科技大学学报
  • 年:2019
  • 期:v.39;No.168
  • 基金:陕西省自然科学基金面上项目(2018JM5071);; 西部矿井开采及灾害防治教育部重点实验室开放课题(WME17KF01);; 中央高校基本科研业务费(DUT17RC(3)051)
  • 语种:中文;
  • 页:XKXB201904005
  • 页数:8
  • CN:04
  • ISSN:61-1434/N
  • 分类号:31-38
摘要
为研究热棒作用下煤堆内部传热行为特征及冷却效果,在物理实验基础上,建立了煤堆-热棒系统复合传热模型,采用ANSYS模拟软件,对自燃煤堆在热棒作用下温度场进行数值模拟。通过分析有、无热棒时煤堆内的温度场及温度等值线的变化,对热棒的降温效果进行评价。结果表明,热棒可以改变煤堆内部的热传导路径,帮助煤堆散热。热棒的存在可以使温度等值线向热端移动,而且越靠近热棒位移量越大,形成包围热棒的"马鞍状"降温模态。根据热棒对松散煤体降温的效果,把热棒的作用范围划分为"敏感区"、"过渡区"、"迟钝区"三区,来有效判断热棒的降温半径,给实际应用中控制热棒的密度提供参考。对比实验和模拟结果,模拟值与实验实测值相近,精度较高。
        In order to study the internal thermal migration behavior under the action of Heat Pipe(HP)in coal stockpile,the physical mathematical model of coal stockpile-HP was established on the basis of physical experiment,and the temperature field of spontaneous combustion coal stockpile under the action of HP was numerically simulated by ANSYS simulation software.By analyzing the change of temperature field and temperature contour in coal stockpile with and without HP,the cooling effects of HP was evaluated.The results show that the HP can change the heat conduction path inside the coal stockpile and help the coal stockpile dissipate heat.The existence of a HP can make the temperature contour move toward the high temperature end,and the closer to the HP,the greater the displacement of the temperature contour,thus the final formation of the "saddle" cooling mode which surronds the HP is formed.According to the effects of HP cooling on the coal pile,the cooling range of the HP is divided into three areas:"sensitive area","transition area" and "transfer area",to judge the cooling radius of the HP effectively,which provides a reference for controlling the density of HPs in practice.By comparing the experimental results,it can be seen that the simulated values are close to the experimental measured values with higher precesion.
引文
[1]Stracher G B,Taylor T P.Coal fires burning out of control around the world:thermodynamic recipe for environmental catastrophe[J].International Journal of Coal Geology,2004,59(1):7-17.
    [2]KONG Xiang-guo,WANG En-yuan,HU Shao-bing,et al.Critical slowing down on acoustic emission characteristics of coal containing methane[J].Journal of Natural Gas Science and Engineering,2015,24:156-165.
    [3]邓军,李贝,马砺.用热棒技术强化煤堆降温幅度试验[J].中国安全科学学报,2015,25(6):62-67.DENG Jun,LI Bei,MA Li.Strengthening the cooling amplitude of coal pile by heat pipe technology[J].China Safety Science Journal,2015,25(6):62-67.
    [4]Narcy M,Lips S,Sartre V.Experimental investigation of a confined flat two-phase thermosyphon for electronics cooling[J].Experimental Thermal and Fluid Science,2018,96:516-529.
    [5]Shafieian A,Khiadani M,Nosrati A.A review of latest developments,progress,and applications of heat pipe solar collectors[J].Renewable and Sustainable Energy Reviews,2018,95:273-304.
    [6]Knipper P,Bertsche D,Gneiting R,et al.Experimental investigation of heat transfer and pressure drop during condensation of R134a in multiport flat tubes[J].International Journal of Refrigeration,2019,98:211-221.
    [7]YUE Chang,ZHANG Quan,ZHAI Zhi-qiang.CFD simulation on the heat transfer and flow characteristics of a microchannel separate heat pipe under different filling ratios[J].Applied Thermal Engineering,2018,139:25-34.
    [8]LI Bei,DENG Jun,YANG Xiao,et al.Heat transfer capacity of heat pipes:an application in coalfield wildfire in China[J].Heat and Mass Transfer,2018,54(6):1755-1766.
    [9]ZHANG Hong,ZHUANG Jun.Research,development and industrial application of heat pipe technology in China[J].Applied Thermal Engineering,2003,23(9):1067-1083.
    [10]XIA Tong-qiang,ZHOU Fu-bao,GAO Feng,et al.Simulation of coal self-heating processes in underground methane-rich coal seams[J].International Journal of Coal Geology,2015,141-142:1-12.
    [11]Hussam J,Sulaiman A,Amisha C,et al.Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry[J].Energy,2017,141:1928-1939
    [12]LIANG Liang,QUAN Yan-ming,KE Zhi-yong.Investigation of tool-chip interface temperature in dry turning assisted by heat pipe cooling[J].The International Journal of Advanced Manufacturing Technology,2011,54(1):35-43.
    [13]ZHANG Ming-yi,PEI Wan-sheng,LAI Yuan-ming,et al.Numerical study of the thermal characteristics of a shallow tunnel section with a two-phase closed thermosyphon group in a permafrost region under climate warming[J].International Journal of Heat and Mass Transfer,2017,104:952-963.
    [14]YU Fan,QI Ji-jin,ZHANG Ming-yi,et al.Cooling performance of two-phase closed thermosyphons installed at a highway embankment in permafrost regions[J].Applied Thermal Engineering,2016,98:220-227.
    [15]YU Fan,ZHANG Ming-yi,LAI Yuan-ming,et al.Crack formation of a highway embankment installed with twophase closed thermosyphons in permafrost regions:field experiment and geothermal modelling[J].Applied Thermal Engineering,2017,115:670-681.
    [16]Chiou R Y,Lu L,Chen J S J,et al.Investigation of dry machining with embedded heat pipe cooling by finite element analysis and experiments[J].The International Journal of Advanced Manufacturing Technology,2007,31(9-10):905-914.
    [17]屈锐.重力热管提取储煤堆自燃热量的实验研究[D].西安:西安科技大学,2014.QU Rui.Experimental study on extracting spontaneous combustion heat of coal storage pile by gravity heat pipe[D].Xi’an:Xi’an University of Science and Technology,2014.
    [18]朱红青,刘星魁.尾巷瓦斯抽采下采空区煤自燃升温的数值模拟[J].西安科技大学学报,2012,32(1):1-7.ZHU Hong-qing,LIU Xing-kui.Numerical simulation of coal spontaneous combustion heating in goaf under gas extraction in tail lane[J].Journal of Xi’an University of Science and Technology,2012,32(1):1-7.
    [19]文虎,师吉林,翟小伟,等.大断面全煤巷高冒区自燃过程的三维数值模拟[J].西安科技大学学报,2012,32(5):537-542.WEN Hu,SHI Ji-lin,ZHAI Xiao-wei,et al.Three-dimensional numerical simulation of spontaneous combustion process in high-rise section of large section coal roadway[J].Journal of Xi’an University of Science and Technology,2012,32(5):537-542.
    [20]杨世铭,陶文铨.传热学(4版)[M].北京:高等教育出版社,2006.YANG Shi-ming,TAO Wen-zhao.Heat transferology(4th ed)[M].Beijing:Higher Education Press,2006.
    [21]周圆圆.埋地重力热管传热性能的研究[D].北京:中国石油大学,2008.ZHOU Yuan-yuan.Study on heat transfer performance of buried gravity heat pipe[D].Beijing:China University of Petroleum,2008.
    [22]郭春香,吴亚平.热棒材料高导热性对其降温效果影响的三维非线性有限元分析[J].兰州交通大学学报,2013,32(1):25-29.GUO Chun-xiang,WU Ya-ping.Three-dimensional nonlinear finite element analysis of the effect of high thermal conductivity of heat pipe materials on its cooling effect[J].Journal of Lanzhou Jiaotong University,2013,32(1):25-29.
    [23]吴鹏.热棒布置参数与环境风速对煤堆移热实验研究[D].西安:西安科技大学,2018.WU Peng.Experimental study on heat transfer of coal piles with heat pipe arrangement parameters and ambient wind speed[D].Xi’an:Xi’an University of Science and Technology,2018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700