冬春季海岸滨麦碳水化合物变化差异性与其环境异质性的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship between the changes of carbohydrate metabolism in Leymus mollis( Trin. ) Hara and the environmental heterogeneties on coast during winter and spring
  • 作者:张婷凤 ; 周瑞莲 ; 张玥 ; 王艳芳 ; 贾有余
  • 英文作者:ZHANG Tingfeng;ZHOU Ruilian;ZHANG Yue;WANG Yanfang;JIA Youyu;School of Life Science,Ludong University;Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences and Institute of Resources Environment and Detection Technology;
  • 关键词:海岸 ; 滨麦 ; 碳水化合物 ; 环境异质性 ; 冬春季
  • 英文关键词:coastal dune;;Leymus mollis(Trin.) Hara;;carbohydrate content;;environmental heterogeneity;;winter-spring
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:鲁东大学生命科学学院;内蒙古农牧科学院资源环境与检测技术研究所;
  • 出版日期:2015-12-01 09:57
  • 出版单位:生态学报
  • 年:2016
  • 期:v.36
  • 基金:国家自然科学基金资助项目(31270752);; 烟台市科技局资助项目(2013ZH351)
  • 语种:中文;
  • 页:STXB201616038
  • 页数:11
  • CN:16
  • ISSN:11-2031/Q
  • 分类号:269-279
摘要
以烟台海岸不同生态断带自然生长的滨麦(Leymus mollis(Trin.)Hara)为试验材料,通过在晚秋气温降低和冬季冷冻和春季气温回升过程中滨麦叶片和地下各器官可溶性糖、淀粉和纤维素含量的测定以探讨不同生态断带滨麦在其含量上的差异与环境异质性关系及在滨麦抗盐抗风中作用。结果表明,处在近高潮线(10m)高盐、高水分、强风和低温环境的滨麦根茎和芽粗壮、地上枝叶低矮,春季返青晚;随远离高潮线(50m)土壤盐浓度和海风风速降低,温度增高,滨麦根茎变细,地上枝叶细长,春季返青早,其不同生态断带滨麦形态可塑性与环境异质性相关。随晚秋气温下降不同生态断带滨麦地上部非结构碳水化合物向地下转移,地下繁殖器官根茎和芽成为了非结构性碳水化合物的"库"。在茎和根中可溶性糖向顶芽转移同时淀粉下降,纤维素含量增加。但近高潮线10m处的滨麦,冬季地上非结构性碳水化合物向地下转移较早,芽中储存了较多的非结构碳水化合物,春季返青晚但叶中积累较多的纤维素与其抗冻和抗风相关;而生活在远离高潮线50m处的滨麦晚秋生活期略有加长,冬季转移到地下部的非结构碳水化合物较少,储存量较低,返青较早,其叶片和地下部非结构碳水化合物含量较高与其环境低盐、弱海风及其快速生长相关。因此,不同生态断带滨麦在入冬和春季地上和地下碳水化合物转移和转化上的差异在其适应异质环境、产生形态可塑性、形成多抗逆性中起重要作用。
        Leymus mollis( Trin.) Hara growing on coastal dunes at different zones from the high tide in Yantai,China,was used as a study material. The contents of soluble sugar,starch,and cellulose in the leaves and various sections of the root of L. mollis were measured during late fall and winter when the temperature decreased to below 0℃,and in the spring when the temperatures started rising, in order to understand the correlation between changes of carbohydrate levels and environmental heterogeneity and to elucidate the role of physiological plasticity in L. mollis in the adaptation to wind and salt. The results showed that L. mollis grown on dunes near to the high tide line( 10 m),characterized by higher salt concentration in the soil,higher moisture level,higher wind speed,and lower temperatures had stronger and thicker rhizomes and shoots,foliage grew closer to the groud,and sprouting commenced later in spring. In contrast,L. mollis growing away from the high tide line( 50 m),in the zone characterized by lower soil salinity,lower wind speed,and higher temperature,had thinner roots,slender branches and leaves,and sprouting occurred in early spring. These results indicate that morphological plasticity of L. mollis growing on coastal dunes was associated with environmental heterogeneity. With the drop of temperature in late fall,the non-structural carbohydrates in the leaves of L. mollis were transported to the roots,buds,and rhizome,stored in these organs as a carbohydrate pool. As the soluble sugars were removed from the roots and rhizomes to the buds,the starch content decreased and cellulose content increased in the roots and the rhizome. A difference was detected in the carbohydrate transfer and conversion in L. mollis growing on coastal dunes at different distance from the high tide. L. mollis at the zone near to the high tide line( 10 m) transferred the non-structural carbohydrates from the leaves to the roots earlier in the winter,stored more non-structural carbohydrates in the roots,and sprouted later in the spring. However,they accumulated more cellulose in the leaves,which was correlated with higher resistance to low temperature and sea wind. L. mollis growing 50 m away from the high tide line had a longer living cycle extending into late fall,they transferred less non-structural carbohydrates from the leaves to the roots in winter,stored less non-structural carbohydrates in the roots,and earlier sprouting root in spring. These results indicate that at 50 m the content of nonstructural carbohydrates in leaves and roots was highly associated with plant' s rapid growth and adaptation to lower salinity and wind speed. The results suggested that the physiological plasticity of carbohydrate metabolism in L. mollis growing on coastal dunes at different distance from the high tide line played an important role in its adaptation to heterogeneous environment,resulting in morphological plasticity,maintaining high ecological amplitude,and formation of resistance to salt and sea wind.
引文
[1]Hutchings M J,De Kroom H.Foraging in plants the role of morphological plasticity in resource acquisition.Advances in Ecological Research,1994,25(1):159-238.
    [2]Poor A,Hershock C,Rosella K,Goldberg D E.Do physiological integration and soil heterogeneity influence the clonal growth and foraging of Schoenoplectus pungens?.Plant Ecology,2005,181(1):45-56.
    [3]Zhai Y,Lv Y F,Li X,Wu W M,Bo W H,Shen D F,Xu F,Pang X M,Zheng B S,Wu R L.A synthetic framework for modeling the genetic basis of phenotypic plasticity and its costs.New Phytologist,2014,201(1):357-365.
    [4]许凯扬,叶万辉,李静,李国民.入侵种喜旱莲子草对土壤养分的表型可塑性反应.生态环境,2005,14(5):723-726.
    [5]耿宇鹏,张文驹,李博,陈家宽.表型可塑性与外来植物的入侵能力.生物多样性,2004,12(4):447455.
    [6]申时才,徐高峰,李天林,张付斗,张玉华.5种入侵植物补偿反应及其形态可塑性比较.西北植物学报,2012,32(1):173-179.
    [7]郭立冬,何兴东.不同气温与土壤湿度条件下籽蒿幼苗的表型可塑性.中国沙漠,2011,31(4):987-991.
    [8]于海飞,董鸣,张称意,张淑敏.匍匐茎草本金戴戴对基质盐分含量的表型可塑性.植物生态学报,2002,26(2):140-148.
    [9]胡启鹏,郭志华,李春燕,马履一.植物表型可塑性对非生物环境因子的响应研究进展.林业科学,2008,44(5):135-142.
    [10]Bell D L,Sultan S E.Dynamic phenotypic plasticity for root growth in Polygonum:a comparative study.American Journal of Botany,1999,86(6):807-819.
    [11]Portsmuth A,Niinemets U.Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance.Functional Ecology,2007,21(1):61-77.
    [12]Niinemets U.Photosynthesis and resource distribution through plant canopies.Plant,Cell and Environment,2007,30(9):1052-1071.
    [13]张治安,杨福,陈展宇,徐克章.菰叶片净光合速率日变化及其与环境因子的相互关系.中国农业科学,2006,39(3):502-509.
    [14]Loewe A,Elinig W,Shi L B,Dizengremel P,Hampp R.Mycorrhiza formation and elevated CO2both increase the capacity for sucrose synthesis in source leaves of spruce and aspen.New Phytologist,2000,145(3):565-574.
    [15]周瑞莲,张普金.春季高寒草地牧草根中营养物质含量和保护酶活性的变化及其生态适应性研究.生态学报,1999,16(4):402-407.
    [16]江志坚,黄小平,张景平.环境胁迫对海草非结构性碳水化合物储存和转移的影响.生态学报,2012,32(19):6242-6250.
    [17]Turner L R,Donaghy D J,Lane P A,Rawnsley R P.Patterns of leaf and root regrowth,and allocation of water-soluble carbohydrate reserves following defoliation of plants of prairie grass(Bromus willdenowii Kunth.).Grass and Forage Science,2007,62(4):497-506.
    [18]Alcoverro T,Zimmerman R C,Kohrs D G,Alberte R S.Resource allocation and sucrose mobilization in light-limited eelgrass Zostera marina.Marine Ecology Progress Series,1999,187:121-131.
    [19]Cai Q S,Wang S Z,Cui Z P,Sun J H,Ishii Y.Changes in freezing tolerance and its relationship with the contents of carbohydrates and proline in overwintering centipedegrass(Eremochloa ophiuroides(munro)hack.).Plant Production Science,2004,7(4):421-426.
    [20]Gaudet D A,Laroche A,Yoshida M.Low temperature wheat fungal interactions:A carbohydrate connection.Physiologia Plantarum,1999,106(4):437-444.
    [21]张志良,瞿伟菁.植物生理学实验指导(第三版).北京:高等教育出版社,2003:127-133.
    [22]潘庆民,白永飞,韩兴国,杨景成.植物非结构性贮藏碳水化合物的生理生态学研究进展.植物学通报,2002,19(1):30-38.
    [23]高英志,王艳华,王静婷,刘鞠善,王德利.草原植物碳水化合物对环境胁迫响应研究进展.应用生态学报,2009,20(11):2827-2831.
    [24]Shi C G,Silva L C R,Zhang H X,Zheng Q Y,Xiao B X,Wu N,Sun G.Climate warming alters nitrogen dynamics and total non-structural carbohydrate accumulations of perennial herbs of distinctive functional groups during the plant senescence in autumn in an alpine meadow of the Tibetan Plateau,China.Agricultural and Forest Meteorology,2015,200:21-29.
    [25]白永飞,许志信,段淳清,李德新.典型草原主要牧草植株贮藏碳水化合物分布部位的研究.中国草地,1996,(1):7-9.
    [26]张光辉,李增嘉,潘庆民,宁堂原,杨景成.内蒙古典型草原羊草和大针茅地下器官中碳水化合物含量的季节性变化.草业学报,2006,15(3):42-49.
    [27]孙启忠,王育青,侯向阳.紫花苜蓿越冬性研究概述.草业学报,2004,21(3):21-25.
    [28]周瑞莲,赵哈林.高寒山区牧草生长过程中低温保护物质的作用.中国草地,2001,23(5):19-26.
    [29]周瑞莲,赵哈林.春季高寒山区牧草低温保护物质变化与其脱冻适应间系研究.西北植物学报,2004,24(2):199-204.
    [30]Aerts R,Chapin F S III.The mineral nutrition of wild plants revisited:a re-evaluation of processes and patterns.Advances in Ecological Research,1999,30:1-67.
    [31]Kerkhoff A J,Fagan W F,Elser J J,Enquist B J.Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants.The American Naturalist,2006,168(4):E103-E122.
    [32]Xu S X,Zhao X Q,Sun P,Zhao T B,Zhao W,Xue B.A simulative study on effects of climate warming on nutrient contents and in vitro digestibility of herbage grown in Qinghai-Xizang Plateau.Acta Botanica Sinica,2002,44(11):1357-1364.
    [33]Korner C.Alpine Plant Life:Functional Plant Ecology of High Mountain Ecosystems.Berlin:Springer-Verlag,2003.
    [34]Surprenant J,Barnes D K,Busch R H,Marten G C.Bidirectional selection for neutral detergent fiber and yield in reed canarygrass.Canadian Journal of Plant Science,1988,68(3):705-712.
    [35]Cusicanqui J A,Lauer J G.Plant density and hybrid influence on corn forage yield and quality.Agronomy Journal,1999,91(6):911-915.
    [36]周瑞莲,王相文,左进城,杨润亚,黄清荣,刘怡.海岸不同生态断带植物根叶抗逆生理变化与其Na+含量的关系.生态学报,2015.DOI:10.5846/stxb201310032406.
    [37]Zhang J X,Nguyen H T,Blum A.Genetic analysis of osmotic adjustment in crop plants.Journal of Experimental Botany,1999,50(332):291-302.
    [38]Niklas K J.Plant allometry,leaf nitrogen and phosphorus stoichiometry,and interspecific trends in annual growth rates.Annals of Botany,2006,97(2):155-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700