海岸不同生态断带土壤养分空间异质性与植物分布的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship Between Spatial Heterogeneity of Soil Nutrients and Distribution of Plant Species on Different Sand Land Far from High Tide Line on the Coast
  • 作者:宋玉 ; 周瑞莲 ; 张婷凤 ; 杨润亚
  • 英文作者:SONG Yu;ZHOU Ruilian;ZHANG Tingfeng;YANG Runya;College of Life Science,Ludong University;
  • 关键词:盐度 ; 土壤酶 ; 土壤养分 ; 植被分布 ; 空间异质性
  • 英文关键词:soil salinity;;soil enzyme activities;;soil nutrients;;vegetation distribution;;patial heterogeneity
  • 中文刊名:WOOD
  • 英文刊名:Journal of Ludong University(Natural Science Edition)
  • 机构:鲁东大学生命科学学院;
  • 出版日期:2018-07-15
  • 出版单位:鲁东大学学报(自然科学版)
  • 年:2018
  • 期:v.34;No.120
  • 基金:国家自然科学基金资助项目(31770762)
  • 语种:中文;
  • 页:WOOD201803005
  • 页数:11
  • CN:03
  • ISSN:37-1453/N
  • 分类号:29-39
摘要
本文以烟台海岸沙地为试验地,通过对不同生态断带(取样地距高潮线10,30,50 m)植被、土壤水溶性盐分离子(Na~+,K~+,Cl~-,SO_4~(2-))含量、土壤养分(土壤速效P,速效K,速效N,全K,全P)含量、土壤酶(脲酶、蔗糖酶、磷酸酶)活力的分析,以了解海岸不同生态断带土壤盐度和养分空间异质性与植物分布的关系和作用机理.结果表明,近高潮线10 m处土壤Na~+,K~+,Cl~-,SO_4~(2-)含量最高,尤其是Na~+和Cl~-分别较远离高潮线30 m和50 m处土壤高9.7,2.7倍和22.3,2.8倍.同时,近高潮线10 m处土壤酶脲酶、蔗糖酶、碱性磷酸酶活力和土壤有效养分含量最低,随远离高潮线土壤酶活力上升、土壤有效养分含量增加.与近高潮线10 m相比,50 m处土壤Na~+和Cl~-含量下降了95.7%,73.7%;土壤有效N,有效K,有效P含量分别升高69.1%,32.7%,6.0%;土壤蔗糖酶、脲酶、磷酸酶活力分别提高204.7%,388.1%,455.1%.而且不同生态断带植物种类不同,10 m处只有抗沙埋耐盐性强的滨麦(Leymus mollis)生长形成单一种群,30 m处出现了抗旱抗盐的以肾叶打碗花(Calystegia soldanella)为优势种的草本植物群落,在50 m处出现了以小灌木刺槐(Robinia pseudoacacia)为优势种的草灌群落.研究表明,由于距海岸高潮线距离和受海水侵蚀强度的不同使不同生态断带土壤酶活力和养分含量随远离高潮线土壤盐度的降低而呈梯度增长趋势,不同生态断带土壤酶活力和养分呈空间异质性分布,其中盐分起主导作用.同时海岸生态环境的异质性是诱发植物种分布不同的生态诱因,而植物对沙埋、盐胁迫、土壤瘠薄的适应生态幅不同可能是诱发其分布不同的生物诱因.因此利用海岸带环境盐度和养分的空间异质性,合理布局和栽种抗逆性不同的植物种类将有助于快速恢复海岸带环境和维持海岸生态系统的稳定.
        This experiment was conducted on Yantai coastal dune. The vegetation grown on the different area of10 m,30 m,50 m far from high tide line was surveyed,and the mineral ions( Na~+,K~+,Cl~-,SO_4~(2-)),soil nutrients( available nitrogen,available potassium,available phosphorus,whole potassium,whole phosphorus),and soil enzyme activities( invertase,urease,phosphatase) were measured from the soil of 10 m,30 m,50 m far from high tide line to understand the relationship between spatial heterogeneity of soil nutrients and salt concentration and distribution of plant species and the mechanism is involved on the sand dune. The results showed that contents of Na~+,K~+,Cl~-,SO_4~(2-)were the highest in the soil closed to the high tide line( 10 m),especially the contents of Na~+and Cl~-were higher with 9. 7 and 2. 7 time than that in the 30 m location with 22. 3 times,2.8 times than that in the 50 m location. At the same time,the soil closed to high tide ling( 10 m) had the lowest activities of soil invertase,urease,phosphatase and the content of available nutrient. With far away from high tide line,the contents of water-soluble ions of the soil tend to decrease,while the soil available nutrients and soil enzyme activities tend to increase. Compared with the soil closed to high tide line( 10 m),the contents of Na~+and Cl~-decreased by 95. 7% and 73. 7%,the contents of available nitrogen,available potassium,available phosphorus increased by 69. 1%,32. 7% and 6. 0%,while activities of invertase,urease,phosphatase increased by 204. 7%,388. 1%,455. 1% in the soil far away 50 m from high tide line. With far away from high tide line,the dominated species of coastal vegetation changed and species diversity increased. At 10 m,there was only one species( Leymus mollis) grown there. At 30 m location,there was a community of Calystegia soldanella,which was a dominated species with resistance to drought and salt. At 50 m location,there was a community of Robinia pseudoacacia,which was also a dominated species with resistance to drought and salt. It indicated that the distance from coastal high tide and strength subject to seawater erosion affected on the activity of soil enzymes and nutrition content. Both the activity of soil enzymes and nutrition were lowest on high tide line,and increased as the distance from high tide line increased and the salt content of soil decreased. The salt played an important role in soil enzyme activity and nutrient heterogeneity distribution. At the same time,the spatial heterogeneity of nutrient content was a ecological factor inducing the different spatial heterogeneity of plant species distribution. But it was a biological factor that plant species had different amplitude of ecological adaptation to sand burial,salt stress,and barren soil. Therefore,taking advantage of spatial heterogeneity of nutrient distribution and soil salt contents to reasonably arrange and plant species with different ability of resistance to adversity environment,will be helpful to promote the environment recovery of coast and maintain the stable of coastal ecological system.
引文
[1]李红柳,李小宁,侯晓珉,等.海岸带生态恢复技术研究现状及存在问题[J].城市环境与城市生态,2003,16(6):36-37.
    [2]王栋,买合木提,玉永雄,等.我国海岸带生态现状研究进展[J].河北渔业,2007,9(165):10-14.
    [3]洪华生,丁原红,洪丽玉,等.我国海岸带生态环境问题及其调控对策[J].环境污染治理技术与设备,2003,4(1):89:94.
    [4]张忠华,胡刚,祝介东,等.喀斯特森林土壤养分的空间异质性及其对树种分布的影响[J].植物生态学报,2011,35(10):1038-1049.
    [5]CAMBANDELLA C A,MOORNAN T B,NOVAK J M,et al.Field-scale variability of soil properties in cen-tral Iowa soils[J].Soil Science Society of America Journal,1994,58:1501-1511.
    [6]张忠华,胡刚.南亚热带次生林土壤p H值与含水量的空间异质性[J].生态科学,2014,(1):148-153.
    [7]WANG L X,MOU P P,HUANG J H,et al.Spatial heterogeneity of soil nitrogen in a subtropical forest in China[J].Plant and Soil,2007,295:137-150.
    [8]王淑英,路平,王建立,等.不同研究尺度下土壤有机质和全氮的空间变异特征[J].生态学报,2008,28(10):4957-4963.
    [9]YAVITT J B,HARMS K E,GARCIA M N,et al.Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest,Panama[J].Australian Journal of Soil Research,2009,47:674-687.
    [10]BURKE A.Classification and ordination of plant communities of the Naukluft Mountain,Namibia[J].Journal of Vegetation Science,2001,12(1):53-60.
    [11]张宁,滕玖琳,何兴东,等.猫头刺群落对土壤养分空间异质性的响应[J].中国沙漠,2008,28(4):706-711.
    [12]杨帆,邓伟,章光新,等.苏打盐渍土地区芦苇地土壤盐分离子空间变异与群落关系研究[J].土壤学报,2008,45(4):594-600.
    [13]ZHANG Z H,HU G,ZHU J D,et al.,Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests,SW China[J].Ecological Research,2010,25:1151-1160.
    [14]彭晚霞,宋同清,曾馥平,等.喀斯特常绿落叶阔叶混交林植物与土壤地形因子的耦合关系[J].生态学报,2010,30(13):3472-3481.
    [15]SAUER T J,CAMBARDELLA C A,MEEK D W.Spatial variation of soil properties relating to vegetation changes[J].Plant and Soil,2006,28:1-5.
    [16]TATENO R,TAKEDA H.Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor[J].Ecological Research,2003,18:559-571.
    [17]LUNDHOLM J T,LARSON D W.Relationships between spatial environmental heterogeneity and plant species diversity on a limestone pavement[J].Ecography,2003,26:715-722.
    [18]王颖,刘会玲,崔江慧,等.环渤海地区盐渍土养分及盐分离子分布特征[J].江苏农业科学,2016,44(1):344-348,356.
    [19]杨延春,邹志国,施朱峰.江苏滨海盐土土壤盐分与侵蚀规律田[J].江苏农业科学,2012,40(10):347-349.
    [20]路海玲,孟亚利,周玲玲,等.盐胁迫对棉田土壤微生物量和土壤养分的影响[J].水土保持学报,2011,25(1):197-201.
    [21]万忠梅,宋长春.土壤酶活性对生态环境的响应研究进展[J].土壤通报,2009,40(4):951-956.
    [22]鲍士旦.土壤农化分析(第四版)[M].北京:中国农业出版社,2000:118-122,126-137.
    [23]王宝山,赵可夫.小麦叶片中Na、K提取方法的比较[J].植物生理学通讯,1995,31(1):50-52.
    [24]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [25]景宇鹏,李跃进,姚一萍,等.盐渍化土壤酶活性及其与微生物、理化因子的关系[J].中国农业科技导报,2016,18(2):128-138.
    [26]DICK W A,CHENG L,WANG P.Soil acid and alkaling phosphatase activity as p H adjustment indicators[J].Soil Biology and Biochemistry,2000,32(13):1915-1919.
    [27]LIN X U.Principle and Method of Soil Microbiology Research[M].Beijing:Higher Education Press,2010:243-265.
    [28]谢文军,张衍鹏,张淼,等.滨海盐渍化土壤理化性质与小麦生产间的关系[J].土壤学报,2015,52(2):461-466.
    [29]姜珊,于秀芹,李来民,等.1980-2010年烟台市降水变化规律及时空分布特征分析[J].农业科学,2014(3):262-265.
    [30]周瑞莲,赵彦宏,杨润亚,等.海滨滨麦叶片和根对不同厚度沙埋生理响应差异分析[J].生态学报,2015,35(21):7080-7088.
    [31]项秀丽,初庆刚,刘振乾.砂引草泌盐腺的结构与泌盐的关系[J].暨南大学学报(自然科学版),2008,29:305-310.
    [32]刘茹,刘庆华,王奎玲,等.肾叶打碗花营养器官解剖学研究[J].江西农业学报,2009,213:64-67.
    [33]张婷凤,周瑞莲,张玥,等.冬春季海岸滨麦碳水化合物变化差异性与其境异质性的关系[J].生态学报,2016,36(16):5182-5192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700