煤矿瓦斯爆炸冲击下的弧形防爆墙数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation study on curved explosion-proof wall under the impact of coal mine gas explosion
  • 作者:侯敬峰 ; 庄立阳 ; 冯帅 ; 陈城
  • 英文作者:HOU Jingfeng;ZHUANG Liyang;FENG Shuai;CHEN Cheng;School of Civil and Transportation Engineering,Beijing University of Civil Engineering and Architecture;School of Mechanics and Civil Engineering,China University of Mining and Technology(Beijing);
  • 关键词:煤矿瓦斯爆炸 ; 弧形防爆墙 ; 超压峰值 ; ANSYS数值模拟
  • 英文关键词:coal mine gas explosion;;curved explosion-proof wall;;over pressure peak;;ANSYS numerical simulation
  • 中文刊名:JGXB
  • 英文刊名:Journal of Henan Polytechnic University(Natural Science)
  • 机构:北京建筑大学土木与交通工程学院;中国矿业大学(北京)力学与建筑工程学院;
  • 出版日期:2019-05-13 10:25
  • 出版单位:河南理工大学学报(自然科学版)
  • 年:2019
  • 期:v.38;No.189
  • 基金:国家重点基础研究发展计划项目(2016YFC0600903);; 北京市教育委员会科技项目(SQKM201710016003);; 北京建筑大学科研项目(KYJJ2017028)
  • 语种:中文;
  • 页:JGXB201904005
  • 页数:7
  • CN:04
  • ISSN:41-1384/N
  • 分类号:37-43
摘要
为研究掘进面、巷道、采空区、生产隔离区等地点的瓦斯爆炸防护墙的弧度对冲击波的影响,采用ANSYS/LS-DYNA有限元软件对圆心角分别为30°,45°,60°,75°,90°的弧形防爆墙在相同高度、药量和爆距条件下的计算模型进行了模拟,对墙后水平和竖直方向测点的超压值进行分析,并对比经验公式,得出不同弧度下防护墙体的冲击波分布规律以及墙后超压的分布特点。结果表明:(1)相比于直墙式防爆结构,弧形防爆墙受到爆炸冲击波时具有更好的消减作用;(2)各测点压力按照分布特点呈现先增加后衰弱的趋势,不同测点峰值压力受距离墙体和地面远近的影响;(3)相比于其他弧度防爆墙,弧度为60°防爆结构具有较好的抗爆炸冲击波效果。
        In order to study the influence of the radian of the gas explosion-proof wall on the shock wave in tunneling face,roadway,goaf and production isolation area,the calculation models of the arc-shape explosion-proof wall with 30,45,60,75,90 degrees of the central angle were simulated by finite element software ANSYS/LS-DYNA under the same height,charge quantity and explosion distance.The horizontal and vertical directions overpressure of the points behind the wall were measured.By comparing with the empirical formulas,the shock wave distribution of explosion-proof wall in different radius and distribution characteristic of overpressure behind the wall were obtained.The results showed that:(1)Compared with the straight-wall explosion-proof structures,the arc-shaped explosion-proof wall had a better reduction effect when being subjected to explosive shock wave;(2)According to the distribution characteristics,the pressure at each measuring point increased first and then decreased,the peak pressure at different measuring points was affected by the distance between the wall and the ground;(3)Compared with other radian explosion-proof walls,the 60 degree radian explosion-proof structure had better anti-explosion shock wave effect.
引文
[1] 刘建胜,王晓蕾.2001—2013年我国煤矿瓦斯爆炸事故基本特征与发生规律探讨[J].中州煤炭,2014(9):72-76.LIU J S,WANG X L.Discussion on basic characteristics and occurrence law of coal mine gas explosion accidents in China from 2001 to 2013[J].Zhongzhou Coal,2014(9):72-76.
    [2] 郭德勇,刘金城,姜光杰.煤矿瓦斯爆炸事故应急救援响应机制[J].煤炭学报,2006,31(6):697-700.GUO D Y,LIU J C ,JIANG G J.Emergency rescue response mechanism for coal mine gas explosion accident[J].Journal of Coal,2006,31(6):697-700.
    [3] 石华.矿井瓦斯抽采PVC管路爆炸原因及预防[J].技术与市场,2017,24(12):180-182.SHI H.Causes and prevention of explosion of PVC pipeline for mine gas drainage[J].Technology and Market,2017,24(12):180-182.
    [4] 景一,张西西,程健维.基于ANSYS数值模拟的密闭墙抗爆冲击安全性分析[J].煤矿安全,2017,48(11):194-197.JING Y,ZHANG X X,CHENG J W.ANSYS-based numerical simulation of explosion-resistant impact safety analysis of closed walls[J].Coal mine Safety,2017,48(11):194-197.
    [5] 曲志明,周心权,和瑞生,等.掘进巷道瓦斯爆炸衰减规律及特征参数分析[J].煤炭学报,2006,31(3):324-328.QU Z M,ZHOU X Q,HE R S,et al.Attenuation law and characteristic parameter analysis of gas explosion in driving roadway[J].Journal of Coal,2006,31(3):324-328.
    [6] 侯万兵,谭迎新,张英浩.模拟煤矿巷道内瓦斯爆炸特性的试验研究[J].煤炭科学技术,2009,37(5):58-61.HOU W B,TAN Y X,ZHANG Y H.Experimental study on simulating gas explosion characteristics in coal mine roadway[J].Journal of Coal,2009,37(5):58-61.
    [7] 丁广骧.煤矿巷道瓦斯爆轰理论分析和参数计算[J].中国矿业大学学报,2000,29(1):37-40.DING G X.Theoretical analysis and parameter calculation of gas detonation in coal mine roadway[J].Journal of China University of Mining & Technology,2000,29(1):37-40.
    [8] 魏春荣.多孔材料对瓦斯爆炸抑制作用研究[D].哈尔滨:哈尔滨工业大学,2013.WEI C R.Study on Inhibitory Effect of Porous Materials on Gas Explosion[D].Harbin:Harbin Institute of Technology,2013.
    [9] 岳强,司荣军.瓦斯爆炸冲击作用下新型复合结构防护外壳的动态响应[J].振动与冲击,2011,30(10):147-152.YUE Q,SI R J.Dynamic response of a new composite structural protective enclosure under the impact of gas explosion[J].Vibration and Shock,2011,30(10):147-152.
    [10] 祝钊.瓦斯抽采安全防护关键技术及多级防护系统研究[D].大连:大连理工大学,2014.ZHU Z,Research on key technologies and multilevel protection system of safety protection for gas drainage[D].Dalian:Dalian University of Technology,2014.
    [11] 程绍仁,朱楚群,程建军.采空区瓦斯爆炸及防护技术的研究[J].山西煤炭,2003(4):49-50.CHENG S R,ZHU C Q,CHENG J J.Research on gas explosion and protection technology in goaf[J].Shanxi Coal,2003(4):49-50.
    [12] 赵飞,杨胜强.新元煤矿瓦斯抽采系统优化[J].河南理工大学学报,2018,37(1):15-22.ZHAO F,YANG S Q.Optimization of gas drainage system in Xinyuan coal mine[J].Journal of Henan University of Technology,2018,37(1):15-22.
    [13] 贾宝山,温海燕,梁运涛,等.煤矿巷道内N2及CO2抑制瓦斯爆炸的机理特性[J].煤炭学报,2013,38(3):361-366.JIA B S,WEN H Y,LIANG Y T,et al.Mechanism characteristics of N2 and CO2 inhibition of gas explosion in coal mine roadway[J].Journal of Coal,2013,38(3):361-366.
    [14] 郭艳飞,魏国营,李学臣,等.赵固二矿千米定向煤钻孔区域瓦斯治理关键技术研究[J].河南理工大学学报(自然科学版),2019,38(2):14-19.GUO Y F,WEI G Y,LI X C,et al.Key technology study of regional gas control in kilometre-directional coal drilling in Zhaogu No.2 mine[J].Journal of Henan Polytechnic University(Natural Science),2019,38(2):14-19.
    [15] GONZALEZ NICIEZA C,ALVAREZ FERNANDEZ R,ALVAREZ FERNANDEZ M I,et al.Forensic analysis of a methane gas explosion in a block of apartments[J].Engineering Failure Analysis,2014,36.
    [16] FREDRIK LARSSON,SIMON BERTILSSON,MAURIZIO FURLANI,et al.Gas explosions and thermal runaways during external heating abuse of commercial lithiumion graphite-LiCoO2 cells at different levels of ageing[J].Journal of Power Sources,2018,373:220-231.
    [17] 张甜,金龙哲,高娜.旬东煤矿井下永久避难硐室构建研究[J].中国安全生产科学技术,2014,10(8):81-85.ZHANG T,JIN L Z,GAO N.Study on construction of permanent refuge chamber in Xundong coal mine[J].Science and Technology of Safety Production in China,2014,10(8):81-85.
    [18] 张淑涛.煤矿井下避难硐室防护墙设计[J].煤矿安全,2015,46(1):82-84.ZHANG S T.Design of protective wall for underground refuge chamber in coal mine[J].Coal mine Safety,2015,46(1):82-84.
    [19] 徐全军,渠银录,姜楠,等.某炸药库内爆作用下坑道内隔爆防护墙厚度估算[J].爆破器材,2012,41(2):34-36.XU Q J,QU Y L,JIANG N,et al.Thickness estimation of flameproof protection wall in tunnel under internal explosion of an explosive depot[J].Blasting Equipment,2012,41(2):34-36.
    [20] 张千里,张耀,年鑫哲.混凝土防爆墙对爆炸冲击波传播的影响[J].振动与冲击,2013,32(24):192-197.ZHANG Q L,ZHANG Y,NIAN X Z.Influence of concrete explosion-proof wall on the propagation of explosion shock wave[J].Vibration and Shock,2013,32(24):192-197.
    [21] 穆朝民,任辉启,李永池,等.爆炸冲击波对墙体绕射效应的研究[J].力学与实践,2009,31(5):35-40.MU C M,REN Q H,LI Y C,et al.Study on effect of blasting shock wave on wall diffraction[J].Mechanics and Practice,2009,31(5):35-40.
    [22] 马云玲,赵丽君,聂建新.异型防爆墙抗空气冲击波的数值模拟[J].爆破,2010,27(1):26-30.MA Y L,ZHAO L J,NIE J X.Numerical simulation of anti-air shock wave of special-shaped explosion-proof Wall[J].Blasting,2010,27(1):26-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700