水下航行体微气泡减阻特性试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tests for microbubble drag reduction features of an underwater vehicle
  • 作者:宋武超 ; 王聪 ; 魏英杰 ; 路丽睿
  • 英文作者:SONG Wuchao;WANG Cong;WEI Yingjie;LU Lirui;School of Astronautics, Harbin Institute of Technology;
  • 关键词:水下减阻 ; 微气泡流 ; 空隙率 ; 水洞试验
  • 英文关键词:underwater drag reduction;;microbubble flow;;porosity;;water tunnel test
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:哈尔滨工业大学航天学院;
  • 出版日期:2019-03-15
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.337
  • 基金:国家自然科学基金项目(11672094)
  • 语种:中文;
  • 页:ZDCJ201905030
  • 页数:7
  • CN:05
  • ISSN:31-1316/TU
  • 分类号:211-216+236
摘要
为研究微气泡对水下航行体减阻影响规律,分析微气泡流形态变化特性,基于高速摄像系统和测力系统,开展水下航行体微气泡减阻特性试验研究。基于高速摄像系统,对比分析了微气泡流形态变化特性及微气泡尺寸分布特征;基于测力系统,分析了微气泡减阻特性变化规律及微气泡尺寸对减阻效率的影响。试验结果表明:通气环和通气段模型在不同通气率下微气泡流形态的最主要差别在于是否存在"卷起"和空穴现象,且微气泡流形态的不同对微气泡的减阻规律产生直接影响;不同条件下,微气泡尺寸分布均服从正态分布,且相同来流速度下,微气泡直径随着微孔介质孔隙的增加而增大;随着通气量的增加,通气环模型减阻率依次呈现缓慢增加、快速增加和逐渐稳定三个阶段,通气段模型减阻率则始终保持以一个较为稳定的增长率线性增加,直到最后逐渐稳定;尺寸较小的微气泡具有更高的减阻效率。
        To study the effect laws of microbubble flow on drag reduction of an underwater vehicle and analyze morphological variation characteristics of microbubble flow, water tunnel tests were conducted for microbubble drag reduction features of an underwater vehicle based on a high speed camera system and a six-component force-measuring system. The morphologic variation characteristics of microbubble flow and its size distribution features were contrastively analyzed based on images captured by the high speed camera. The microbubble drag reduction characteristics and effects of microbubble size on drag reduction efficiency were analyzed based on the six-component force-measuring system. The test results showed that the main difference between microbubble flow morphology of ventilation ring model and that of ventilation section one under different ventilation rates is whether or not there are roll-up and cavity phenomena, and different microbubble flow morphologies directly affect the microbubble drag reduction law; the size distributions of microbubble under different conditions satisfy normal distribution, and under the same coming flow velocity, diameter of microbubble increases with increase in microporous medium porosity; with increase in ventilation, the drag reduction rate of ventilation ring model reveals 3 stages including slow increase stage, fast increase one and gradually stable one, while the drag reduction rate of ventilation section model increases linearly at a more stable increase rate until it finally stabilizes; smaller microbubbles have a higher drag reduction efficiency.
引文
[1] 杨传武, 王安稳, 施连会,等. 超空泡流下壳结构模型动态特性实验研究[J]. 振动与冲击, 2010, 29(11):17-20. YANG Chuanwu, WANG Anwen, SHI Lianhui, et al. Experimental investigation on dynamic characteristics of a shell model under supercavity[J]. Journal of Vibration and Shock, 2010, 29(11):17-20.
    [2] 张孝石, 王聪, 曹伟,等. 活性剂对水下航行体减阻特性的影响[J]. 哈尔滨工业大学学报, 2017, 49(4):137-141. ZHANG Xiaoshi, WANG Cong, CAO Wei, et al. Influence of surfactant on drag reduction characteristic of underwater vehicle[J]. Journal of Harbin Institute of Technology, 2017, 49(4):137-141.
    [3] 向敏, 张为华, 张孜博,等. 局部通气空泡尾部微气泡流减阻仿真研究[J]. 兵工学报, 2011, 32(6):733-738. XIANG Min, ZHANG Weihua, ZHANG Zibo, et al. Numerical research on microbubble drag reduction downstream of partial ventilated cavity[J]. Acta Armamentarii, 2011, 32(6):733-738.
    [4] MCCORMICK M E, BHATTACHARYYA R. Drag reduction of a submersible hull by electrolysis[J]. Naval Engineers Journal, 1973,85(2):11-16.
    [5] DEUTSCH S E, CASTANO J G. Microbubble skin friction reduction on an axisymmetric body[J]. Physics of Fluids, 1986,29(11):3590-3597.
    [6] MERKLE C L, DEUTSCH S. Microbubble drag reduction in liquid turbulent boundary layers[J]. Applied Mechanics Reviews, 1992,45(3):103-127.
    [7] FONTAINE A A, DEUTSCH S, BRUNGART T A, et al. Drag reduction by coupled systems: microbubble injection with homogeneous polymer and surfactant solutions[J]. Experiments in Fluids, 1999,26(5):397-403.
    [8] DEUTSCH S, MOENY M, FONTAINE A A, et al. Microbubble drag reduction in rough walled turbulent boundary layers with comparison against polymer drag reduction[J]. Experiments in Fluids, 2004,37(5):731-744.
    [9] KAWAMURA T, MORIGUCHI Y, KATO H, et al. Effect of bubble size on the microbubble drag reduction of a turbulent boundary layer[C]//Joint Fluids Summer Engineering Conference. Honolulu, Hawaii, USA: American Society of Mechanical Engineers, 2003.
    [10] SHEN X, CECCIO S L, PERLIN M. Influence of bubble size on micro-bubble drag reduction[J]. Experiments in Fluids, 2006,41(3):415-424.
    [11] SANDERS W C, WINKEL E S, DOWLING D R, et al. Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer[J]. Journal of Fluid Mechanics, 2006,552(552):353-380.
    [12] 王家楣, 姜曼松, 郑晓伟, 等. 不同喷气形式下船舶微气泡减阻水池试验研究[J]. 华中科技大学学报(自然科学版), 2004,32(12):78-80. WANG Jiamei, JIANG Mansong, ZHENG Xiaowei, et al. Study of drag reduction of vessel model by microbubble with different injection forms in the towing basin[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2004, 32(12):78-80.
    [13] 王家楣, 郑晓伟, 姜曼松. 船舶吃水对微气泡减阻影响的水池试验研究[J]. 船舶工程, 2004,26(6):9-12. WANG Jiamei, ZHENG Xiaowei, JIANG Mansong. Test research on drag reduction of ship model at different draft by microbubble in towing basin[J]. Ship Engineering, 2004, 26(6):9-12.
    [14] 杨新峰, 苑秉成, 陈立纲,等. 微气泡减阻实验研究[J]. 水动力学研究与进展, 2009, 24(1):89-94. YANG Xinfeng, YUAN Bingcheng, CHEN Ligang, et al. Experimental study on drag reduction by microbubbles[J]. Journal of Hydrodynamics, 2009, 24(1):89-94.
    [15] XU J, MAXEY M R, KARNIADAKIS G E. Numerical simulation of turbulent drag reduction using micro-bubbles[J]. Journal of Fluid Mechanics, 2002,468:271-281.
    [16] MOHANARANGAM K, CHEUNG S C P, TU J Y, et al. Numerical simulation of micro-bubble drag reduction using population balance model[J]. Ocean Engineering, 2009,36(11):863-872.
    [17] LU J, FERNáNDEZ A, TRYGGVASON G. The effect of bubbles on the wall drag in a turbulent channel flow[J]. Physics of Fluids, 2005,17(9): 267-277.
    [18] 傅慧萍. 平板微气泡减阻数值模拟及影响因素分析[J]. 哈尔滨工程大学学报, 2015,36(10):1297-1301. FU Huiping. Numerical simulation of microbubble drag reduction in a plate and factors in fluencing its practicality process[J]. Journal of Harbin Engineering University, 2015, 36(10):1297-1301.
    [19] 傅慧萍, 李杰. 微气泡减阻的数值模拟方法及尺寸效应[J]. 上海交通大学学报, 2016,50(2):278-282. FU Huiping, LI Jie. Numerical simulation methods of microbubbles drag reduction and scale effect[J]. Journal of Shanghai Jiaotong University, 2016, 50(2):278-282.
    [20] 欧勇鹏, 董文才. 气泡高速艇艇底气穴形态及减阻机理研究[J]. 哈尔滨工程大学学报, 2013,34(1):51-57. OU Yongpeng, DONG Wencai. Study on high-speed air cavity craft form and mechanism of resistance[J]. Journal of Harbin Engineering University, 2013,34(1):51-57.
    [21] 吴乘胜, 何术龙. 微气泡流的数值模拟及减阻机理分析[J]. 船舶力学, 2005,9(5):30-37. WU Chengsheng, HE Shulong. Numerical simulation of microbubble flow and analysis of the mechanism of drag reduction[J]. Journal of Ship Mechanics, 2005,9(5):30-37.
    [22] WU S, HSU C, LIN T. Model test of the surface and submerged vehicles with the micro-bubble drag reduction[J]. Ocean Engineering, 2007,34(1):83-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700