材料表面微纳形貌对血管细胞行为影响的研究综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review on Influence of Micro-nano Scale Surface Topography on Vascular Cells Responses
  • 作者:李昱彤 ; 裴佳 ; 袁广银
  • 英文作者:LI Yu-tong;PEI Jia;YUAN Guang-yin;The State Key Lab of Metal Matrix Composites,National Engineering Research Center of Light Alloy Net Forming,School of Materials Science and Engineering,Shanghai Jiaotong University;
  • 关键词:镁合金血管支架 ; 支架再内皮化 ; 表面微纳形貌 ; 血管内皮细胞 ; 血管平滑肌细胞
  • 英文关键词:magnesium alloy vascular stent;;stent re-endothelialization;;micro-nano scale surface topography;;vascular endothelial cells;;vascular smooth muscle cells
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:上海交通大学材料科学与工程学院轻合金精密成型国家工程研究中心金属基复合材料国家重点实验室;
  • 出版日期:2019-07-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(51701041)~~
  • 语种:中文;
  • 页:BMJS201907040
  • 页数:9
  • CN:07
  • ISSN:50-1083/TG
  • 分类号:346-353+360
摘要
镁合金具有良好的生物相容性、优良的力学性能以及可完全降解的特点,是制备血管支架的理想材料。然而在支架植入初期,支架表面平滑肌细胞增殖速率超过内皮细胞增殖速率,导致支架内再狭窄的发生。近年来,在材料表面构筑微纳尺度形貌,通过调控血管内皮细胞和平滑肌细胞行为,实现支架表面快速内皮化成为一种新的研究思路。从基底材料、形貌特征、制备工艺、细胞种类以及实验结果等方面,系统地总结了近年来关于材料表面微纳形貌对血管细胞行为的影响。因为目前镁合金表面微纳形貌对血管细胞行为影响的报道尚少,从镁合金种类、形貌制备工艺、形貌特征以及形貌功能等方面详细整理了不同研究领域,在镁合金表面制备微纳形貌的相关研究。与此同时,分析了在镁基血管支架表面制备微纳尺度形貌用于实现支架表面快速内皮化研究所面临的挑战,并介绍了本课题组相关研究工作进展。
        Magnesium alloys are promising materials to prepare the vascular stent due to the favorable biocompatibility, excellent mechanical properties and perfect biodegradable property. However, in-stent restenosis(ISR) still remains in the primary stage of implantation because of the excessive proliferation of vascular smooth muscle cells(SMCs) over endothelial cells(ECs). Recently, micro-nano scale surface topography construction provides a prospective strategy for rapid re-endothelialization via regulating the behavior of both ECs and SMCs. The work systematically summarized the influence of micro-nano surface topography on vascular cells from the aspects of substrate materials, topography features, preparation methods, cell types and test results. As there were few reports on the influence of micro-nano surface topography of magnesium alloys on the cell responses, relevant researches on fabrication of micro-nano topography on magnesium alloys surface in different fields were introduced in detail from type of magnesium alloy, topography fabrication process, topography characteristics, topography functions, etc. Meanwhile, the challenges of applying micro-nano scale topography to promote rapid re-endothelialization of Mg-based vascular stents were analyzed and the corresponding research progress in the research group was presented.
引文
[1]RICCARDO G,MARCO L,EDOARDO V,et al.Safety and efficacy of first-generation and second-generation drug-eluting stents in the setting of acute coronary syndromes[J].Journal of cardiovascular medicine,2014,15(7):532-542.
    [2]LIN W J,ZHANG D Y,ZHANG G,et al.Design and characterization of a novel biocorrodible iron-based drugeluting coronary scaffold[J].Materials&design,2016,91:72-79.
    [3]ZENG R C,DIETZEL W,FRANK W,et al.Progress and challenge for magnesium alloys as biomaterials[J].Advanced engineering materials.2008,10(8):3-14.
    [4]MA J,ZHAO N,ZHU D.Biphasic responses of human vascular smooth muscle cells to magnesium ion[J].Jbiomed mater res part A,2016,104:347-356.
    [5]MAO L,YUAN G Y,NIU J L,et al.In vitro degradation behavior and biocompatibility of Mg-Nd-Zn-Zr alloy by hydrofluoric acid treatment[J].Materials science and engineering C,2013,33:242-250.
    [6]MAO L,YUAN G Y,WANG S,et al.A novel biodegradable Mg-Nd-Zn-Zr alloy with uniform corrosion behavior in artificial plasma[J].Materials letters,2012,88:1-4.
    [7]CHEN C,TAN J,WU W,et al.Modeling and experimental studies of coating delamination of biodegradable magnesium alloy cardiovascular stents[J].ACS biomaterials science&engineering,2018,4(11):3864-3873.
    [8]MAO L,SHEN L,CHEN J,et al.Enhanced bioactivity of Mg-Nd-Zn-Zr alloy achieved with nanoscale Mg F2 surface for vascular stent application[J].ACS applied materials&interfaces,2015,7(9):5320-5330.
    [9]MAO L,SHEN L,NIU J L,et al.Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents[J].Nanoscale,2013,5(20):9517-9522.
    [10]ZHANG J,LI H,WANG W,et al.The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery:A 20-month study[J].Acta biomaterialia,2018,69:372-384.
    [11]LILIENSIEK S J,NEALEY P,MURPHY C J.Characterization of endothelial basement membrane nanotopography in rhesus macaque as a guide for vessel tissue engineering[J].Tissue engineering:part A,2008,15:19.
    [12]GLENDINNING W B,MARSHALL S,MARK A,et al.Projection photolithograpgy for use in the of microcircuits[J].Ieee transctions on component parts,1964,9:19-26.
    [13]CHEN C S,MRKSICH M,HUANG S,et al.Geometric control of cell life and death[J].Science,1997,276:1425-1428.
    [14]BIELA S A,SU Y,SPATZ J P,et al.Different sensitivity of human endothelial cells,smooth muscle cells and fibroblasts to topography in the nano-micro range[J].Acta biomaterialia,2009,5(7):2460-2466.
    [15]LILIENSIEK S J,WOOD J A,YONG J,et al.Modulation of human vascular endothelial cell behaviors by nanotopographic cues[J].Biomaterials,2010,31(20):5418-5426.
    [16]DING Y,YANG Z,BI C W C,et al.Directing vascular cell selectivity and hemocompatibility on patterned platforms featuring variable topographic geometry and size[J].ACS applied materials&interfaces,2014,6(15):12062-12070.
    [17]SCHIEBER R,LASSERRE F,HANS M,et al.Direct laser interference patterning of CoCr alloy surfaces to control endothelial cell and platelet response for cardiovascular applications[J].Advanced healthcare materials2017,6(19):1700327.
    [18]CUTIONGCO M F A,GOH S H,AID-LAUNAIS R,et al.Planar and tubular patterning of micro and nanotopographies on poly(vinyl alcohol)hydrogel for improved endothelial cell responses[J].Biomaterials,2016,84:184-195.
    [19]CORTESE B,RIEHLE M O,AMONE S D,et al.Influence of variable substrate geometry on wettability and cellular responses[J].Journal of colloid and interface science,2013,394:582-589.
    [20]CORTELLA L,CESTARI I A,GUENTHER D,et al.Endothelial cell responses to castor oil-based polyurethane substrates functionalized by direct laser ablation[J]Biomedical materials,2017,12:65010.
    [21]SHEN Y,WANG G,CHEN L,et al.Investigation of surface endothelialization on biomedical nitinol(NiTi)alloy:Effects of surface micropatterning combined with plasma nanocoatings[J].Acta biomaterialia,2009,5(9):3593-3604.
    [22]AKTAS C,D?RRSCHUCK E,SCHUH C,et al.Microand nanostructured Al2O3 surfaces for controlled vascular endothelial and smooth muscle cell adhesion and proliferation[J].Materials science and engineering:C,201232(5):1017-1024.
    [23]CHUNG T,LIU D,WANG S,et al.Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale[J].Biomaterials,2003,24(25):4655-4661.
    [24]KHANG D,LU J,YAO C,et al.The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium[J].Biomaterials,2008,29(8):970-983.
    [25]LAMALICE L,LE B F,HUOT J.Endothelial cell migration during angiogenesis[J].Circulation research,2007,100(6):782-794.
    [26]SIT S T,MANSER E.Rho GTPases and their role in organizing the actin cytoskeleton[J].Journal of cell science,2011,124(5):679-683.
    [27]FRIEDL P.Prespecification and plasticity:Shifting mechanisms of cell migration[J].Curr opin cell biol,2004,16(1):14-23.
    [28]SARA Fernández-Castillejo,PILAR Formentín,úRSU-LA Catalán,et al.Silicon microgrooves for contact guidance of human aortic endothelial cells full research paper open access[J].Beilstein J nanotechnol,2017,8(8):675-681.
    [29]GONG X,YAO J,HE H,et al.Combination of flow and micropattern alignment affecting flow-resistant endothelial cell adhesion[J].Journal of the mechanical behavior of biomedical materials,2017,74:11-20.
    [30]BETTINGER C J,ORRICK B,MISRA A,et al.Microfabrication of poly(glycerol-sebacate)for contact guidance applications[J].Biomaterials,2006,27(12):2558-2565.
    [31]DALBY M J,RIEHLE M O,JOHNSTONE H,et al.In vitro reaction of endothelial cells to polymer demixed nanotopography[J].Biomaterials,2002,23(14):2945-2954.
    [32]CUI L,JOO H J,KIM D H,et al.Manipulation of the response of human endothelial colony-forming cells by focal adhesion assembly using gradient nanopattern plates[J].Acta biomaterialia,2018,65:272-282.
    [33]RANELLA A,BARBEROGLOU M,BAKOGIANNI S,et al.Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures[J].Acta biomaterialia,2010,6(7):2711-2720.
    [34]LIANG C,HU Y,WANG H,et al.Biomimetic cardiovascular stents for in vivo re-endothelialization[J].Biomaterials,2016,103:170-182.
    [35]CUI X,LIN X,LIU C,et al.Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy[J].Corrosion science,2015,90:402-412.
    [36]ROJAEE R,FATHI M,RAEISSI K.Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments[J].Applied surface science,2013,285:664-673.
    [37]HEISE S,WIRTH T,H?HLINGER M,et al.Electrophoretic deposition of chitosan/bioactive glass/silica coatings on stainless steel and WE43 Mg alloy substrates[J].Surface and coatings technology,2018,344:553-563.
    [38]LIU W,YAN Z,MA X,et al.Mg-MOF-74/MgF2 composite coating for improving the properties of magnesium alloy implants:hydrophilicity and corrosion resistance[J].Materials,2018,11(3):396.
    [39]DUNNE C F,LEVY G K,HAKIMI O,et al.Corrosion behaviour of biodegradable magnesium alloys with hydroxyapatite coatings[J].Surface and coatings technology,2016,289:37-44.
    [40]ASSADIAN M,JAFARI H,GHAFFARI SHAHRI S M,et al.Topography,wetting,and corrosion responses of electrodeposited hydroxyapatite and fluoridated hydroxyapatite on magnesium[J].Bio-medical materials and engineering,2016,27(2-3):287-303.
    [41]TALTAVULL C,TORRES B,LOPEZ A J,et al.Corrosion behaviour of laser surface melted magnesium alloy AZ91D[J].Materials&design,2014,57:40-50.
    [42]POTYOMKIN G V,LIGACHEV A E,ZHIDKOV M V,et al.The change in the surface topography of magnesium under high-flux C ion irradiation[J].Journal of physics:Conference series,2015,652:12005.
    [43]LIU Y,YIN X,ZHANG J,et al.A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy[J].Electrochimica acta,2014,125:395-403.
    [44]GRAY-MUNRO J,CAMPBELL J.Mimicking the hierarchical surface topography and superhydrophobicity of the lotus leaf on magnesium alloy AZ31[J].Materials letters,2017,189:271-274.
    [45]SU Q,XU J,WANG C,et al.The fabrication of micro-array channels with the ultrafine-grained LZ91 Mg-Li alloy by micro-embossing[J].Micromachines,2018,9(2):55.
    [46]ISKANDAR M E,ASLANI A,TIAN Q,et al.Nanostructured calcium phosphate coatings on magnesium alloys:Characterization and cytocompatibility with mesenchymal stem cells[J].Journal of materials science:Materials in medicine,2015,26(5):189.
    [47]SHEN S,CAI S,BAO X,et al.Biomimetic fluoridated hydroxyapatite coating with micron/nano-topography on magnesium alloy for orthopaedic application[J].Chemical engineering journal,2018,339:7-13.
    [48]ZHANG L,PEI J,WANG H,et al.Facile preparation of poly(lactic acid)/brushite bilayer coating on biodegradable magnesium alloys with multiple functionalities for orthopedic application[J].ACS applied materials&interfaces,2017,9(11):9437-9448.
    [49]YANG G,YANG H,SHI L,et al.Enhancing corrosion resistance,osteoinduction,and antibacterial properties by Zn/Sr additional surface modification of magnesium alloy[J].ACS biomaterials science&engineering,2018,4(12):4289-4298.
    [50]MA N,CHEN Y,ZHAO S,et al.Preparation of superhydrophobic and superoleophobic Al-Mg alloy surface via simple,environmentally friendly method[J].Journal of materials research,2018,33(22):3818-3826.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700