日粮纤维调节猪肠道微生物和肠黏膜屏障功能的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dietary fiber regulates intestinal microbiota and intestinal barrier function in pigs:a review
  • 作者:张宏福 ; 吴维达 ; 张莉 ; 解竞静 ; 陈亮
  • 英文作者:Zhang Hongfu;Wu Weida;Zhang Li;Xie Jingjing;Chen Liang;
  • 关键词:日粮纤维 ; 肠道菌群 ; 黏膜屏障 ; 短链脂肪酸 ; 微生物
  • 英文关键词:dietary fiber;;intestinal flora;;mucusa immune;;SCFA;;microbiota
  • 中文刊名:FEED
  • 英文刊名:Feed Industry
  • 机构:中国农业科学院北京畜牧兽医研究所动物营养学国家重点实验室;
  • 出版日期:2019-01-10
  • 出版单位:饲料工业
  • 年:2019
  • 期:v.40;No.574
  • 基金:动物营养学国家重点实验室自主研究课题[2004DA125184G1604];; 中国农业科学院创新工程[ASTIPIAS07];; 国家自然基金[31802072]
  • 语种:中文;
  • 页:FEED201901002
  • 页数:11
  • CN:01
  • ISSN:21-1169/S
  • 分类号:7-17
摘要
仔猪腹泻难题制约生猪养殖水平的提高。随着高铜、高锌、抗生素的限用禁用,仔猪腹泻亟需"绿色"替代方案。日粮纤维作为第六大营养素,具有维持肠道健康的生理功能。日粮纤维可以通过优化肠道菌群结构,调节黏膜屏障等作用促进猪肠道的健康发育与完整功能实现。文章就日粮纤维对猪肠道微生物以及黏膜屏障功能的可能作用途径以及相关作用机制进行综述,以促进日粮纤维在猪日粮生产上应用,尤其是仔猪日粮生产上的合理广泛利用。
        The diarrhea restricts the raising of pig industry level. With the prohibition of high copper,high zinc and antibiotic, piglet diarrhea needs "green" alternative to be solved. As the sixth major nu-trients, dietary fiber has the physiological function of maintaining intestinal health. Dietary fiber canpromote the function of pig's intestine by optimizing the structure of intestinal microbiota and regulat-ing the mucosal barrier. In this review, we summarized the possible regulation mechanisms of dietaryfiber on intestinal microbiota and mucosal barrier function in pigs, the aim to promote rational and ex-tensive use of dietary fiber in pig diets, especially in piglets.
引文
[1]刘文,倪奕弘,张凤鸣,等.高铜、高锌饲养对仔猪肠道菌重金属耐受性的研究[J].畜禽业,2014(3):32-35.
    [2]J.Zhang,C.Li,X.Tang,et al.High Concentrations of Atmospheric Ammonia Induce Alterations in the Hepatic Proteome of Broilers(Gallus gallus):An iTRAQ-Based Quantitative Proteomic Analysis[J].Plos One,2015,10:e0123596.
    [3]张宏福.加强环境生理研究应用,推进畜禽健康养殖技术升级[J].兽医导刊,2016(4):11-12.
    [4]Y.Belkaid,T.W.Hand.Role of the Microbiota in Immunity and Inflammation[J].Cell,2014,157:121-141.
    [5]杨利娜,边高瑞,朱伟云.单胃动物肠道微生物菌群与肠道免疫功能的相互作用[J].微生物学报,2014(5):480-486.
    [6]R.Jha,J.Berrocoso.Review:Dietary fiber utilization and its effects on physiological functions and gut health of swine[J].Animal,2015:1-12.
    [7]M.G.Rooks,W.S.Garrett.Gut microbiota,metabolites and host immunity[J].Nature Reviews Immunology,2016,16:341.
    [8]W.J.Lee,K.Hase.Gut microbiota-generated metabolites in animal health and disease[J].Nature Chemical Biology,2014,10:416-424.
    [9]L.Vogt,D.Meyer,G.Pullens,et al.Immunological properties of inulin-type fructans[J].Critical Reviews in Food Science&Nutrition,2015,55:414.
    [10]L.M.Vogt,M.E.Elderman,T.Borghuis,et al.Chain length-dependent effects of inulin-type fructan dietary fiber on human systemic immune responses against hepatitis-B[J].Molecular Nutrition&Food Research,2017:1700171.
    [11]Y.He,C.Wu,J.Li,et al.Inulin-Type Fructans Modulates Pancreatic-Gut Innate Immune Responses and Gut Barrier Integrity during Experimental Acute Pancreatitis in a Chain Length-Dependent Manner[J].Frontiers in Immunology,2017,8:1209.
    [12]A.Trompette,E.S.Gollwitzer,C.Pattaroni,et al.Dietary Fiber Confers Protection against Flu by Shaping Ly6c-Patrolling Monocyte Hematopoiesis and CD8+T Cell Metabolism[J].Immunity,2018,48:992-1005.
    [13]张丽英.饲料分析及饲料质量检测技术[M].第2版.中国农业大学出版社,2003.
    [14]K.Raninen,J.Lappi,H.Mykk?nen,et al.Dietary fiber type reflects physiological functionality:comparison of grain fiber,inulin,and polydextrose[J].Nutrition Reviews,2011,69:9-21.
    [15]B.J.Kerr,G.C.Shurson.Strategies to improve fiber utilization in swine[J].Journal of Animal Science and Biotechnology,20134:11.
    [16]K.E.B.Knudsen,M.S.Hedemann,H.N.L?rke.The role o carbohydrates in intestinal health of pigs[J].Animal feed science and technology,2012,173:41-53.
    [17]F.Molist,E.G.Manzanilla,J.F.Pérez,et al.Nyachoti,Coarse but not finely ground,dietary fibre increases intestinal Firmicutes:Bacteroidetes ratio and reduces diarrhoea induced by experimental infection in piglets[J].British Journal of Nutrition2012,108:9-15.
    [18]S.Kelkar,M.Siddiq,J.Harte,et al.Use of low-temperature extrusion for reducing phytohemagglutinin activity(PHA)and oligosaccharides in beans(Phaseolus vulgaris L.)cv.Navy and Pinto[J].Food Chemistry,2012,133:1636-1639.
    [19]R.Jha,J.Bindelle,B.Rossnagel,et al.In vitro evaluation of the fermentation characteristics of the carbohydrate fractions of hulless barley and other cereals in the gastrointestinal tract of pigs[J].Animal Feed Science and Technology,2011,163:185-193.
    [20]R.Jha,P.Leterme.Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs[J].Animal2012,6:603-611.
    [21]C.L.Dikeman,G.C.Fahey Jr.Viscosity as related to dietary fiber:a review[J].Critical reviews in food science and nutrition2006,46:649-663.
    [22]K.A.El,F.Armougom,J.I.Gordon,et al.The abundance and variety of carbohydrate-active enzymes in the human gut microbiota[J].Nature Reviews Microbiology,2013,11:497.
    [23]B.L.Cantarel,P.M.Coutinho,C.Rancurel,et al.The Carbohydrate-Active EnZymes database(CAZy):an expert resource for glycogenomics[J].Nucleic acids research,2009,37:233-238.
    [24]F.C.Pereira,D.Berry.Microbial nutrient niches in the gut[J].Environmental Microbiology,2017,19:1366-1378.
    [25]D.Haenen,C.S.da Silva,J.Zhang,et al.Resistant starch induces catabolic but suppresses immune and cell division pathways and changes the microbiome in the proximal colon of male pigs[J].The Journal of nutrition,2013,143:1889-1898.
    [26]D.Haenen,J.Zhang,C.S.da Silva,et al.A diet high in resistant starch modulates microbiota composition,SCFA concentrations,and gene expression in pig intestine[J].The Journal of nutrition,2013,143:274-283.
    [27]L.F.Jiao,Y.L.Ke,K.Xiao,et al.Effects of cello-oligosaccharide on intestinal microbiota and epithelial barrier function of weanling pigs[J].Journal of Animal Science,2015,93:1157-1164.
    [28]Y.Sun,Y.Su,W.Zhu.Microbiome-Metabolome Responses in the Cecum and Colon of Pig to a High Resistant Starch Diet[J].Frontiers in Microbiology,2016(7):779.
    [29]L.Zhang,C.Mu,X.He,et al.Effects of dietary fibre source on microbiota composition in the large intestine of suckling piglets[J].Fems Microbiology Letters,2016,363,fnw138(14)30.
    [30]T.Looft,H.K.Allen,B.L.Cantarel,et al.Henrissat and T.B.Stanton,Bacteria,phages and pigs:the effects of in-feed antibiotics on the microbiome at different gut locations[J].Isme Journal,2014,8:1566-1576.
    [31]L.Zhang,W.Wu,Y.K.Lee,et al.Spatial Heterogeneity and Co-occurrence of Mucosal and Luminal Microbiome across Swine Intestinal Tract[J].Frontiers in Microbiology,2018,9:48.
    [32]M.E.V.Johansson,J.M.H.Larsson,G.C.Hansson.The two mucus layers of colon are organized by the MUC2 mucin,whereas the outer layer is a legislator of host-microbial interactions[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108:4659-4665.
    [33]M.E.V.Johansson,M.Phillipson,J.Petersson,et al.The Inner of the Two Muc2 Mucin-Dependent Mucus Layers in Colon Is Devoid of Bacteria[J].Gut Microbes,2010,105:51-54.
    [34]A.M.O'Hara,F.Shanahan.The gut flora as a forgotten organ[J].Embo Reports,2006,7:688-693.
    [35]H.Ito,M.Satsukawa,E.Arai,et al.Soluble fiber viscosity affects both goblet cell number and small intestine mucin secretion in rats[J].Journal of Nutrition,2009,139:1640-1647.
    [36]S.Hino,N.Takemura,K.Sonoyama,et al.Small intestinal goblet cell proliferation induced by ingestion of soluble and insoluble dietary fiber is characterized by an increase in sialylated mucins in rats[J].Journal of Nutrition,2012,142:1429.
    [37]M.S.Desai,A.M.Seekatz,N.M.Koropatkin,et al.A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility[J].Cell,2016,1671339-1353.
    [38]H.Chen,W.Wang,J.Degroote,et al.Arabinoxylan in Wheat Is More Responsible Than Cellulose for Promoting Intestinal Barrier Function in Weaned Male Piglets[J].The Journal of nutrition2015,145:51-58.
    [39]L.Chen,H.Zhang,L.Gao,et al.Effect of graded levels of fiber from alfalfa meal on intestinal nutrient and energy flow,and hindgut fermentation in growing pigs[J].Journal of animal science,2013,91:4757-4764.
    [40]J.Zou,B.Chassaing,V.Singh,et al.Fiber-Mediated Nourishment of Gut Microbiota Protects against Diet-Induced Obesity by Restoring IL-22-Mediated Colonic Health[J].Cell Host&Microbe,2017,23:41.
    [41]O.T.Foye,I-FeiHuang,C.C.Chiou,et al.Early administration of probiotic Lactobacillus acidophilus and/or prebiotic inulin attenuates pathogen-mediated intestinal inflammation and Smad 7cell signaling[J].Fems Immunology&Medical Microbiology2012,65:467-480.
    [42]J.Kovacsnolan,H.Kanatani,A.Nakamura,et al.β-1,4-mannobiose stimulates innate immune responses and induces TLR4-dependent activation of mouse macrophages but reduces severity of inflammation during endotoxemia in mice[J].Journal of Nutrition,2013,143:384.
    [43]R.Badia,G.Zanello,C.Chevaleyre,et al.Effect of Saccharomyces cerevisiae var.Boulardii andβ-galactomannan oligosaccharide on porcine intestinal epithelial and dendritic cells challenged in vitro with Escherichia coli F4(K88)[J].Veterinary Research,2012,43:4.
    [44]L.Che,H.Chen,B.Yu,et al.Long-term intake of pea fiber affects colonic barrier function,bacterial and transcriptional profile in pig model[J].Nutrition&Cancer,2014,66:388-399.
    [45]P.R.Pouillart,F.Dépeint,A.Abdelnour,et al.Nutriose,a prebiotic low-digestible carbohydrate,stimulates gut mucosal immunity and prevents TNBS-induced colitis in piglets[J].Inflammatory Bowel Diseases,2010,16:783-794.
    [46]P.Akbari,J.Fink-Gremmels,R.H.Willems,et al.Characterizing microbiota-independent effects of oligosaccharides on intestinal epithelial cells:insight into the role of structure and size Structure-activity relationships of non-digestible oligosaccharides[J].European Journal of Nutrition,2016,56:1919-1930.
    [47]M.Bermudez-Brito,N.M.Sahasrabudhe,C.R?sch,et al.The impact of dietary fibers on dendritic cell responses in vitro is dependent on the differential effects of the fibers on intestinal epithelial cells[J].Molecular Nutrition&Food Research,2015,59:698-710.
    [48]F Capitán Ca?adas,M Ortega González,E Guadix,et al.Prebiotic oligosaccharides directly modulate proinflammatory cytokine production in monocytes via activation of TLR 4[J].Molecular nutrition&food research,2014,58(5):1098-1110..
    [49]S.Varasteh,S.Braber,J.Garssen,et al.Galacto-oligosaccharides exert a protective effect against heat stress in a Caco-2cell model[J].Journal of Functional Foods,2015,16:265-277.
    [50]M.Ortega-González,B.Ocón,I.Romero-Calvo,et al.Nondigestible oligosaccharides exert nonprebiotic effects on intestinal epithelial cells enhancing the immune response via activation of TLR4-NFκB[J].Molecular Nutrition&Food Research,2014,58:384-393.
    [51]M.Zenhom,A.Hyder,M.V.De,et al.Prebiotic oligosaccharides reduce proinflammatory cytokines in intestinal Caco-2cells via activation of PPARγand peptidoglycan recognition protein 3[J].Journal of Nutrition,2011,141:971-977.
    [52]M.Levy,E.Blacher,E.Elinav.Microbiome,metabolites and host immunity[J].Current Opinion in Microbiology,2017,35:8-15.
    [53]C.Gutzeit,G.Magri,A.Cerutti.Intestinal IgA production and its role in host-microbe interaction[J].Immunological Reviews,2014,260:76-85.
    [54]Q.Wang,J.Westra,V.D.G.Ks,et al.Reduced levels of cytosolic DNA sensor AIM2 are associated with impaired cytokine responses in healthy elderly[J].Experimental Gerontology,2016,78:39-46.
    [55]N.Ma,P.Guo,J.Zhang,et al.Nutrients Mediate Intestinal Bacteria-Mucosal Immune Crosstalk[J].Frontiers in Immunology,2018(9):5.
    [56]M.Sun,C.He,Y.Cong,et al.Regulatory immune cells in regulation of intestinal inflammatory response to microbiota[J].Mucosal Immunology,2015,8:969-978.
    [57]N.Zmora,S.Bashiardes,M.Levy,et al.The Role of the Immune System in Metabolic Health and Disease[J].Cell metabolism,2017,25:506.
    [58]T.S.Postler,S.Ghosh.Understanding the Holobiont:How Microbial Metabolites Affect Human Health and Shape the Immune System[J].Cell metabolism,2017,26:110.
    [59]J.K.Nicholson,E.Holmes,J.Kinross,et al.Host-gut microbiota metabolic interactions[J].Science,2012,336:1262-1267.
    [60]S.Fukuda,H.Toh,K.Hase,et al.Bifidobacteria can protect from enteropathogenic infection through production of acetate[J].Nature 469,543,Gut Microbes,2012,469:543-547.
    [61]J.Taehwan,P.Jeonghyeon,J.Woomin,et al.Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway[J].Nutrition Research&Practice,2015,9:343-349.
    [62]H.Yan,K.M.Ajuwon.Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway[J].Plos One,2017,12:e0179586.
    [63]G.D.Besten,K.V.Eunen,A.K.Groen,et al.The role of shortchain fatty acids in the interplay between diet,gut microbiota,and host energy metabolism[J].Journal of Lipid Research,2013,54:2325-2340.
    [64]J.Slavin.Fiber and Prebiotics:Mechanisms and Health Benefits[J].Nutrients,2013,5:1417-1435.
    [65]T.Chen,C.Y.Kim,A.Kaur,et al.Dietary fibre-based SCFAmixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model[J].Food&Function,2017:8.
    [66]R.Corrêa-Oliveira,J.L.Fachi,A.Vieira,et al.Regulation of immune cell function by short-chain fatty acids[J].Clinical&Translational Immunology,2016,5:73.
    [67]P.Louis,G.L.Hold,H.J.Flint.The gut microbiota,bacterial metabolites and colorectal cancer[J].Nature Reviews Microbiology,2014,12:661-672.
    [68]A.Wahlstr?m,S.I.Sayin,H.U.Marschall,et al.Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism[J].Cell metabolism,2016,24:41-50.
    [69]P.Pathak,X.Cen,R.G.Nichols,et al.Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism[J].Hepatology,2018.
    [70]I.Kim,K.Morimura,Y.Shah,et al.Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice[J].Carcinogenesis,2007,28:940.
    [71]F.Yang,X.Huang,T.Yi,et al.Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor[J].Cancer Research,2007,67:863.
    [72]K.Mobraten,T.Haugbro,E.Karlstrom,et al.Activation of the bile acid receptor TGR5 enhances LPS-induced inflammatory responses in a human monocytic cell line[J].Journal of Receptors&Signal Transduction,2015,35:1-8.
    [73]C.Guo,H.Qi,Y.Yu,et al.The G-Protein-Coupled Bile Acid Receptor Gpbar1(TGR5)Inhibits Gastric Inflammation Through Antagonizing NF-κB Signaling Pathway[J].Frontiers in Pharmacology,2015:6.
    [74]T.Harach.TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading[J].Cell metabolism,2011,14:747-757.
    [75]A Perino,K Schoonjans.TGR5 and immunometabolism:insights from physiology and pharmacology[J].Trends in Pharmacological Sciences,2015,36(12):847-857.
    [76]J.R.Zaneveld,R.McMinds,R.Vega Thurber.Stress and stability:applying the Anna Karenina principle to animal microbiomes[J].Nature Microbiology,2017,2:17121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700