R134a在风冷分液式冷凝换热器中的换热性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Heat Transfer Performance of R134a in Air-Cooling Liquid-Vapor Separation Condenser
  • 作者:刘策 ; 贾力 ; 张旋
  • 英文作者:LIU Ce;JIA Li;ZHANG Xuan;Institute of Thermal Engineering, School of Mechanical, Electronic and Control Engineering,Beijing Jiaotong University;Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale;
  • 关键词:分液式 ; 分离液量 ; 换热性能 ; 风冷冷凝器
  • 英文关键词:liquid-vapor separation;;condensate separated;;heat transfer performance;;air-cooling condenser
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:北京交通大学机械与电子控制工程学院热能工程研究所;微细尺度流动与相变传热北京市重点实验室;
  • 出版日期:2019-07-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:中央基础科研业务费重点项目(No.2018JBZ108)
  • 语种:中文;
  • 页:GCRB201907026
  • 页数:7
  • CN:07
  • ISSN:11-2091/O4
  • 分类号:170-176
摘要
对于管内冷凝,随着冷凝过程的进行,冷凝液膜会在壁面处不断积累,增加换热热阻。加入分液结构可以将冷凝液及时分离,改善下游蒸汽干度,再生"入口段薄液膜效应",提高管内换热换热系数。本文针对具有U型分液结构的管翅式冷凝换热器,开展了不同风速、不同蒸气质量流速下的换热器整体换热性能研究,并对3 mm和6 mm管径的分液管的分离液量进行了测量。实验结果表明:随着蒸汽质量流速的增加,具有分液结构的翅片冷凝换热器整体换热系数增加,但当质量流速大于250 kg·m~(-2)·s~(-1)时,管内换热基本呈现单相换热,整体换热系数降低;随着冷却风速的增加,换热器整体换热系数增加;与3 mm分液管径相比,6 mm分液管径下,分液量提高了20%~50%,并且因为分液量的提高,管内干度更高,换热器整体换热系数提高了20%~50%。
        In the process of in-tube condensation,the condensate film would accumulate continuously on the tube wall,increasing the thermal resistance.Inserting the liquid-vapor separation structure could help timely separate the condensate,improving the quality of the downstream flow and regenerating the"thin liquid film effect in the inlet section".Then,the heat transfer coefficient inside the tube could be improved.In this paper,the overall heat transfer performance of the finned tube condenser with a U-tube liquid-vapor separator was investigated.The experimental conditions involved different wind speeds and different mass fluxes.The mass flow rates of the condensate separated through the separation tubes with diameters of 3 mm and 6 mm were measured.The experimental results showed that with the increase of the mass flux,the overall heat transfer coefficient of the finned tube condenser with the liquid-vapor separator increased,but when the mass flux was more than 250 kg-m~(-2).s~(-1),the heat transfer inside the tube basically presented single-phase heat transfer and the overall heat transfer coefficient decreased.Then,with the increase of the wind speed,the overall heat transfer coefficient increased.Finally,compared with the separation tube with diameter of 3 mm,the separation tube with diameter of 6 mm could increase the mass flow rate of the condensate separated by 20%~50%.And as a result,the quality inside the tube was increased and the overall heat transfer coefficient was increased by 20%~50%.
引文
[1]杨文静,王赫,丛培武,等.翅片管换热器的结构优化[J].金属热处理,2017,42(4):208-211YANG Wenjing,WANG He,CONG Peiwu,et al.Structure Optimization of Fin-Tube Heat Exchanger[J].Heat Treatment of Metals,2017,42(4):208-211
    [2]张健,乔春珍,郭江峰,等.基于翅片管式热交换器的优化设计研究[J].节能,2017,36(11):20-23ZHANG Jian,Qiao Chunzhen,GUO Jiangfeng,et al.Research on Optimal Design of Finned Tube Heat Exchanger[J].Energy Conservation,2017,36(11):20-23
    [3]Kim Y,Kim Y.Heat Transfer Characteristics of Flat Plate Finned-Tube Heat Exchangers with Large Fin Pitch[J].International Journal of Refrigeration,2005,28(6):851-858
    [4]Lozza G,Merlo U.An Experimental Investigation of Heat Transfer and Friction Losses of Interrupted and Wavy Finsfor Fin-and-Tube Heat Exchangers[J].International Journal of Refrigeration,2001,24(5):409-416
    [5]Cavallini A,Col D D,Doretti L,et al.Heat Transfer and Pressure Drop during Condensation of Refrigerants Inside Horizontal Enhanced Tubes[J].International Journal of Refrigeration,2000,23(1):4-25
    [6]Patil P A,Sapali S N.Condensation Pressure Drop of HFC-134a and R-404A in a Smooth and Micro-Fin UTube[J].Experimental Thermal&Fluid Science,2011,35(1):234-242
    [7]Sapali S N,Patil P A.Heat Transfer during Condensation of HFC-134a and R-404A Inside of a Horizontal Smooth and Micro-Fin Tube[J].Experimental Thermal&Fluid Science,2010,34(8):1133-1141
    [8]WU Xiaomin,WANG Xiaoliang,WANG Weicheng.Condensation Heat Transfer and Pressure Drop of R22 in 5mm Diameter Microfin Tubes[J].Journal of Enhanced Heat Transfer,2004,11(4):275-282
    [9]YAN Yiyie,Lin Tsingfa.Condensation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Small Pipe[J].International Journal of Heat and Mass Transfer,1999,42(4):697-708
    [10]Baird J R,Fletcher D F,Haynes B S.Local Condensation Heat Transfer Rates in Fine Passages[J].International Journal of Heat&Mass Transfer,2003,46(23):4453-4466
    [11]Agarwal A,Bandhauer T M,Garimella S.Measurement and Modeling of Condensation Heat Transfer Coefficients in Circular Microchannels[J].Journal of Heat Transfer,2006,128(10):256-268
    [12]Shin J S,Kim M H.An Experimental Study of Flow Condensation Heat Transfer Inside Circular and Rectangular Mini-Channels[J].Heat Transfer Engineering,2005,26(3):36-44
    [13]PENG Xiaofeng,JIA Li.Equal Velocity Steam-Liquid Heat Exchanger:China,200610113304.4[P].2004
    [14]PENG Xiaofeng,WU Di,LU Gui,et al.Liquid-Vapor Separation Air Condenser:China,200610113304.4[P].2006
    [15]Jia L.A Upright Vertical Type Condenser and Heat Transfer Method,China,201410743731.5[P].2014
    [16]CHEN Ying,HUA Nan,DENG Lisheng.Performances of a Split-Type Air Conditioner Employing a Condenser with Liquid-Vapor Separation Baffles[J].International Journal of Refrigeration,2012,35(2):278-289
    [17]CHEN Xueqing,CHEN Ying,DENG Lisheng,et al.Experimental Verification of a Condenser with Liquid-Vapor Separation in an Air Conditioning System[J].Applied Thermal Engineering,2013,51(1/2):48-54
    [18]ZHONG Tianming,CHEN Ying,HUA Nan,et al.InTube Performance Evaluation of an Air-Cooled Condenser with Liquid-Vapor Separator[J].Applied Energy,2014,136:968-978
    [19]钱颂文.换热器设计手册[M].北京:化学工业出版社工业装备与信息工程出版中心,2002QIAN Songwen.Handbook of Heat Transfer[M].Beijing:Industrial Equipment and Information Engineering Publishing Center of Chemical Industry Press,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700