聚苯胺/电气石电极对微生物燃料电池的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of Polyaniline/Tourmaline Composite Electrode Materials for Microbial Fuel Cell
  • 作者:张嵘 ; 张捍民 ; 杨凤林 ; 张广毅
  • 英文作者:ZHANG Rong;ZHANG Hanmin;YANG Fenglin;ZHANG Guangyi;Key Laboratory of Industrial Ecology and Environmental Engineering(MOE),School of Environmental Science and Technology,Dalian University of Technology;
  • 关键词:微生物燃料电池 ; 电极材料 ; 生物阴极 ; 电气石 ; 聚苯胺
  • 英文关键词:microbial fuel cells;;electrode material;;bio-cathode;;tourmaline;;polyaniline
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:大连理工大学环境学院工业生态与环境工程教育部重点实验室;
  • 出版日期:2015-03-15
  • 出版单位:环境科学与技术
  • 年:2015
  • 期:v.38
  • 基金:国家重大水专项子课题项目(2013ZX07202-010)
  • 语种:中文;
  • 页:FJKS201503015
  • 页数:7
  • CN:03
  • ISSN:42-1245/X
  • 分类号:71-77
摘要
文章以电气石和聚苯胺为材料,利用电化学方法来修饰石墨电极。其中以石墨电极、聚苯胺修饰的石墨电极和聚苯胺、电气石共同修饰的石墨电极作对照实验,分别为微生物燃料电池反应器1、2和3的生物阴极材料。生物阴极型微生物燃料电池是以微生物作为阴极的催化剂,微生物催化剂相比贵金属它不仅降低了微生物燃料电池应用的成本,而且还可以保持高的催化性能。因此,寻找一种高电导率、高生物适应性以及能够加强生物催化性能的电极材料对微生物燃料电池的发展有很大的影响。当反应器外电路电阻控制在800Ω时,反应器1、2和3的最大输出电压稳定在(0.20±0.005)、(0.26±0.005)和(0.37±0.005)V,同时反应器1、2和3的最大功率密度分别为54、138和266 m W/m2。而循环伏安曲线的结果也表明聚苯胺、电气石修饰的电极材料催化性能优于其余2种电极材料。因此说明电气石适合作为修饰生物阴极的材料。
        In this article,tourmaline and polyaniline as materials and use the method of electrochemical to modify the graphite electrodes. Tourmaline and polyaniline modified electrode, modified electrode by polyaniline and unmodified electrode were used as cathode in the MFC reactor 1,2 and 3,respectively. Bio-cathode which uses microorganisms as catalyst can reduce MFC cost and sustain similar power output compared to noble metal catalyst. Thereby,looking for a cathode material which is high conductivity, good biocompatibility and even can stimulate and enhance activity of bio-catalyst is of great interest. When the external resistance was 800Ω,output voltages of Reactor 1,2 and 3 were kept at(0.20±0.005)V,(0.26±0.005)V and(0.37±0.005)V,respectively,and the output power density of Reactor 1,2 and 3 were kept at 54 m W/m2,138 m W/m2,266 m W/m2 respectively. Cyclic voltammetry curves show that reductive current of Reactor 3 is higher than those of Reactor 1 and 2,indicating that the cathode of Reactor 3 has the strongest catalytic activity.So results demonstrate that tourmaline suitable as bio-cathode materials to modify graphite electrode.
引文
[1]Logan B E,Regan J M.Microbial fuel cells:challenges and applications[J].Environmental Science and Technology,2006,40(17):5172-5180.
    [2]Logan B E,Hamelers B,Rozendal R,et al.Microbial fuel cells:methodology and technology[J].Environmental Science and Technology,2006,40(17):5181-5192.
    [3]Li Chao,Ding Lili,Cui Hao,et al.Application of conductive polymers in biocathode of microbial fuel cells and microbial community[J].Bioresource Technology,2012,116(0):459-465.
    [4]Oh S,Min B,Logan B E.Cathode performance as a factor in electricity generation in microbial fuel cells[J].Environmental Science and Technology,2004,38(18):4900-4904.
    [5]Cheng S,Logan B E.Increasing power generation for scaling up single-chamber air cathode microbial fuel cells[J].Bioresource Technology,2011,102(6):4468-4473.
    [6]Sanchez D V P,Huynh P,Kozlov M E,et al.Carbon nanotube/platinum(Pt)sheet as an improved cathode for microbial fuel cells[J].Energy Fuels,2010,24(11):5897-5902.
    [7]Chatterjee R,Englelhaupt E,Lubick N,et al.Mercury from underground estuary-another toxin for the Baltic Sea[J].Environmental Science and Technology,2007,41(9):3032-3037.
    [8]Xia Xue,Tokash J C,Zhang Feng,et al.Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells[J].Environmental Science and Technology,2013,47(4):2085-2091.
    [9]Clauwaert P,Ha D V D,Boon N,et al.Open air biocathode enables effective electricity generation with microbial fuel cells[J].Environmental Science and Technology,2007,41(21):7564-7569.
    [10]Zhang Yaping,Sun Jian,Hu Yongyou,et al.Bio-cathode materials evaluation in microbial fuel cells:a comparison of graphite felt,carbon paper and stainless steel mesh materials[J].International Journal of Hydrogen Energy,2012,37(22):16935-16942.
    [11]Wei Jincheng,Liang Peng,Cao Xiaoxin,et al.Use of inexpensive semicoke and activated carbon as biocathode in microbial fuel cells[J].Bioresource Technology,2011,102(22):10431-10435.
    [12]Liu Xianwei,Sun Xuefei,Huang Yuxi,et al.Carbon nanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell[J].Energy&Environmental Science,2011,4(4):1422-1427.
    [13]Xia Meisheng,Hu Caihong,Zhang Hongmei.Effects of tourmaline addition on the dehydrogenase activity of Rhodopseudomonas palustris[J].Process Biochemistry,2006,41(1):221-225.
    [14]Wu Zhaofeng,Wang Hua,Zheng Kang,et al.Incorporating strong polarity minerals of tourmaline with carbon nanotubes to improve the electrical and electromagnetic interference shielding properties[J].The Journal of Physical Chemistry C,2012,116(23):12814-12818.
    [15]Rakesh R,Yeredla,Xu H F.Incorporating strong polarity minerals of tourmaline with semiconductor titania to improve the photosplitting of water[J].The Journal of Physical Chemistry C,2008,112(2):532-539.
    [16]Xu Haili,Cao Qi,Wang Xianyou,et al.Properties and chemical oxidation polymerization of polyaniline/neutral red/Ti O2composite electrodes[J].Materials Science and Engineering:B,2010,171(1):104-108.
    [17]Yuan Y,Ahmed J,Kim S H.Polyaniline/carbon black composite-supported iron phthalocyanine as an oxygen reduction catalyst for microbial fuel cells[J].Journal of Power Sources,2011,196(3):1103-1106.
    [18]Lai Bin,Wang Peng,Li Haoran,et al.Calcined polyaniline-iron composite as a high efficient cathodic catalyst in microbial fuel cells[J].Bioresource Technology,2013,131(0):321-324.
    [19]Rao,Sanjeev M X,Yang C.Simulation of nanostructured electrodes for polymer electrolyte membrane fuel cells[J].Journal of Power Sources,2008,185(2):1094-1100.
    [20]Logan B E,Murano C,Scott K,et al.Electricity generation from cysteine in a microbial fuel cell[J].Water Research,2005,39(5):942-952.
    [21]Li He,Li Ling,Li Haihang.Tourmaline ceramic balls stimulate growth and metabolism of three fermentation microorganisms[J].World J Microbiol Biotechnol,2008,24(5):725-731.
    [22]He Z,Angenent L T.Application of bacterial biocathodes in microbial fuel cells[J].Electroanalysis,2006,18(19/20):2009-2015.
    [23]Kumar G G,Sarathi V G S,Nahm K S.Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells[J].Biosensors and Bioelectronics,2013,43:461-475.
    [24]Qiao Yan,Li Changming,Bao Shujuan,et al.Carbon nanotube/polyaniline composite as anode material for microbial fuel cells[J].Journal of Power Sources,2007,170(1):79-84.
    [25]Wang Yaqiong,Li Bin,Zeng Lizhen,et al.Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells[J].Biosensors and Bioelectronics,2013,41(0):582-588.
    [26]Dong Heng,Yu Hongbing,Wang Xin.Catalysis kinetics and porous analysis of rolling activated carbon-PTFE aircathode in microbial fuel cells[J].Environmental Science and Technology,2012,46(23):13009-13015.
    [27]Nakamura T,Kubo T.The tourmaline group crystals reaction with water[J].Ferroelectrics,1992,137(3):13-31.
    [28]Kubo T.Interface activity of water given rise to by tourmaline[J].Solid State Physics,1989,27(7):303-313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700