两相流相互作用下的船模微气泡减阻性能数值仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Ship Model Microbubble Drag Reduction Based on Two-phase Flow Interaction
  • 作者:徐庚辉 ; 张咏欧 ; 钟声驰
  • 英文作者:XU Genghui;ZHANG Yongou;ZHONG Shenchi;Wuhan University of Technology, School of Energy and Power Engineering;Wuhan University of Technology, School of Transportation;
  • 关键词:两相流 ; 摩擦阻力 ; 微气泡 ; 减阻 ; 数值计算
  • 英文关键词:two-phase flow;;frictional resistance;;microbubble;;drag reduction;;numerical calculation
  • 中文刊名:CANB
  • 英文刊名:Ship Engineering
  • 机构:武汉理工大学能源与动力工程学院;武汉理工大学交通学院;
  • 出版日期:2019-04-25
  • 出版单位:船舶工程
  • 年:2019
  • 期:v.41;No.266
  • 基金:国家自然科学基金重点项目(51139005);; 武汉理工大学自主创新研究基金项目(2018-ND-B1-04)
  • 语种:中文;
  • 页:CANB201904008
  • 页数:6
  • CN:04
  • ISSN:31-1281/U
  • 分类号:44-48+72
摘要
基于两相流理论,对集装箱船船模进行微气泡减阻性能数值仿真研究。分析船模在不同喷气口位置、不同流体含气率、不同喷射速度和不同喷射角度下的流场分布和减阻效果。结果表明:当流体内的微气泡含量过高时,会增大船体的摩擦阻力,流体的含气率为10%~20%时有较好的减阻效果,喷气口在距离球鼻艏后缘约1/3船长附近具有较高的空气覆盖率,喷气口喷气方向垂直向下产生的减阻效果比喷气方向偏向船侧产生的减阻效果要好,且船速较高时可允许含气率较高的流体注入流场并增大减阻效果。
        Numerical simulation of microbubble drag reduction performance of container ship model is carried out, based on two phase flow theory. The flow field distribution and drag reduction effect of the ship model at different air nozzle positions, fluid void fraction, injection speeds and angles are analyzed. The results show that, when the content of microbubble is too high, the frictional resistance of ship hull will be increased,and the void fraction of fluid is 10%~20%, the frictional drag reduction effect is better. The nozzle opening position has higher air coverage near the captain about one third of the rear edge of the bulbous bow, and the drag reduction effect of the nozzle jet direction is better than that of the jet direction toward the side of the ship.When the ship speed is higher, the flow field with higher gas content can be injected into the flow field and the drag reduction effect can be increased.
引文
[1]CECCIO S L.Friction Drag Reduction of External Flows with Bubble and Gas Injection[J].Annual Review of Fluid Mechanics,2010,42(6):183-203.
    [2]王妍.波浪中船舶微气泡减阻数值模拟[D].哈尔滨:哈尔滨工程大学,2013.
    [3]PANG M,ZHANG Z.Numerical Investigation on Turbulence Drag Reduction by Small Bubbles in Horizontal Channel with Mixture Model Combined with Population Balance Model[J].Ocean Engineering,2018,162:80-97.
    [4]ALJALLIS E,SARSHAR M A,DATLA R,et al.Experimental Study of Skin Friction Drag Reduction on Superhydrophobic Flat Plates in High Reynolds Number Boundary Layer Flow[J].Physics of Fluids,2013,25(2):103-110.
    [5]王家楣,蔡成法.船模摩擦阻力的一种测试方法及结果[J].武汉理工大学学报(交通科学与工程版),2003,27(1):4-6.
    [6]ELBING B R,WINKEL E S,LAY K A,et al.Bubble-Induced Skin-Friction Drag Reduction and the Abrupt Transition to Air-Layer Drag Reduction[J].Journal of Fluid Mechanics,2008,612:201-236.
    [7]傅慧萍,李杰,于彤彤,等.微气泡减阻的数值模拟方法及尺寸效应[J].上海交通大学学报,2016,50(2):278-282.
    [8]邵峰,金久才,张杰.无人船FLUENT阻力模拟与试验验证[J].海洋技术学报,2014,33(5):8-12.
    [9]PARK H J,OISHI Y,TASAKA Y,et al.Void Waves Propagating in the Bubbly Two-Phase Turbulent Boundary Layer Beneath a Flat-Bottom Model Ship During Drag Reduction[J].Experiments in Fluids,2016,57(12):178-211.
    [10]KUMAGAI I,TAKAHASHI Y,MURAI Y.Power-Saving Device for Air Bubble Generation Using a Hydrofoil to Reduce Ship Drag:Theory,Experiments,and Application To Ships[J].Ocean Engineering,2015,95:183-194.
    [11]MARYAMI R,FARAHAT S,SHAFIE MAYAM M H,et al.Experimental Investigation of the Bubbly Drag Reduction in the Presence of Axial Flow in a the Couette-Taylor System[J].Amirkabir Journal of Science&Research(Mechanical Engineering),2015,47:33-45.
    [12]郑晓伟,王家楣,曹春燕.二维船舶微气泡减阻数值模拟[J].船舶工程,2005,27(6):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700