多孔钛腰椎融合器在不同入路椎间融合术中的生物力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biomechanical Properties of Porous Titanium Cages for Different Lumbar Interbody Fusion Surgeries
  • 作者:张振军 ; 李文钊 ; 李慧 ; 廖振华 ; 孟庆铸 ; 孙大为 ; 孙学君 ; 刘伟强
  • 英文作者:ZHANG Zhenjun;LI Wenzhao;LI Hui;LIAO Zhenhua;MENG Qingzhu;SUN Dawei;SUN Xuejun;LIU Weiqiang;Department of Mechanical Engineering, Tsinghua University;Laboratory of Biomedical Material and Implanted Devices, Shenzhen Institute of Tsinghua University;Beijing Medical Implant Engineering Research Center,Naton Science and Technology Group;Haicheng City Central Hospital;Beijing Yingnuanlihe Technologies Co., Ltd.;
  • 关键词:多孔融合器 ; 前路腰椎椎间融合术 ; 后路腰椎椎间融合术 ; 经椎间孔腰椎椎间融合术 ; 直接外侧椎间融合术 ; 生物力学
  • 英文关键词:porous cages;;anterior lumbar interbody fusion(ALIF);;posterior lumbar interbody fusion(PLIF);;transforaminal lumbar interbody fusion(TLIF);;direct lateral interbody fusion(DLIF);;biomechanics
  • 中文刊名:YISX
  • 英文刊名:Journal of Medical Biomechanics
  • 机构:清华大学机械工程系;深圳清华大学研究院生物医用材料及植入器械重点实验室;北京纳通科技集团有限公司北京市医用内植物工程技术研究中心;辽宁省海城市中心医院;北京盈暖利和科技有限公司;
  • 出版日期:2019-06-15
  • 出版单位:医用生物力学
  • 年:2019
  • 期:v.34
  • 基金:国家重点研发计划课题(2016YFC1102002)
  • 语种:中文;
  • 页:YISX201903004
  • 页数:8
  • CN:03
  • ISSN:31-1624/R
  • 分类号:22-29
摘要
目的探究采用多孔融合器在不同入路腰椎融合术的生物力学性能。方法建立完整腰椎三维有限模型,通过实验方法获得多孔材料的力学参数。针对多孔融合器在前路腰椎椎间融合术(anterior lumbar interbody fusion, ALIF)、后路腰椎椎间融合术(posterior lumbar interbody fusion, PLIF)、经椎间孔腰椎椎间融合术(transforaminal lumbar interbody fusion, TLIF)和直接外侧椎体间融合术(direct lateral interbody fusion, DLIF)中的生物力学性能进行对比研究。结果在施行椎间融合术后,DLIF、ALIF模型预测的活动度(range of motion, ROM)和融合器应力明显低于PLIF、TLIF模型,DLIF、ALIF和TLIF模型预测的终板应力明显低于PILF模型。结论采用多孔融合器的DLIF模型显示出较优的生物力学性能,而且在临床过程中操作简单适于微创术式。DLIF手术具有更优的综合性能。
        Objective To study the biomechanical properties of porous titanium cages used for different lumbar interbody fusion surgeries. Methods The three-dimensional(3D) finite element model of the lumbar spine was constructed, and mechanical parameters of porous materials were obtained by mechanical test. The biomechanical properties of porous titanium cages in anterior lumbar interbody fusion(ALIF), posterior lumbar interbody fusion(PLIF), transforaminal lumbar interbody fusion(TLIF), direct lateral interbody fusion(DLIF) were compared. Results After lumbar interbody surgery, the predicted range of motion(ROM) and the maximum stress in cage of DLIF model and ALIF model were substantially lower than those of PLIF model and TLIF model. The maximum stress in endplate of DLIF model, ALIF model and TLIF model were obviously lower than that of PLIF model. Conclusions DLIF with the porous cage showed advantages in biomechanical properties, which was simple to operate and suitable for minimally invasive surgery in clinical practice. DLIF performed the superior comprehensive properties.
引文
[1] ZHANG ZJ,LI H,FOGEL GR,et al.Biomechanical analysis of porous additive manufactured cages for lateral lumbar interbody fusion:A finite element analysis [J].World Neurosurg,2018,111:E581-591.
    [2] COLE CD,MCCALL TD,SCHMIDT MH,et al.Comparison of low back fusion techniques:Transforaminal lumbar interbody fusion (TLIF) or posterior lumbar interbody fusion (PLIF) approaches [J].Curr Rev Musculoskelet Med,2009,2(2):118-126.
    [3] YANG SD,CHEN Q,DING WY,et al.Unilateral pedicle screw fixation with bone graft vs.bilateral pedicle screw fixation with bone graft or cage:A comparative study [J].Med Sci Monit,2016,22:890-897.
    [4] ZHANG ZJ,LI H,FOGEL GR,et al.Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages [J].Comput Biol Med,2018,95:167-174.
    [5] KIM DH,JEONG ST,LEE SS.Posterior lumbar interbody fusion using a unilateral single cage and a local morselized bone graft in the degenerative lumbar spine [J].Clin Orthop Surg,2009,1(4):214-221.
    [6] MELNYK AD,WEN TL,KINGWELL SF,et al.Load transfer characteristics between posterior spinal implants and the lumbar spine under anterior shear loading:An in vitro investigation [J].Spine,2012,37(18):E1126-E1133.
    [7] TSAI PI,HSU CC,CHEN SY.Biomechanical investigation into the structural design of porous additive manufactured cages using numerical and experimental approaches [J].Comput Biol Med,2016,76:14-23.
    [8] JONES AC,ARNS CH,SHEPPARD AP,et al.Assessment of bone ingrowth into porous biomaterials using MICRO-CT [J].Biomaterials,2007,28(15):2491-2504.
    [9] OFweek3D打印网.国内首例获CFDA许可的金属3D打印椎间融合器[EB/OL].http://3dprint.ofweek.com/2017-01/ART-132107-8120-30098071.html,2017-01-25.
    [10] FAIZAN A,KIAPOUR A,KIAPOUR AM,et al.Biomechanical analysis of various footprints of transforaminal lumbar interbody fusion devices [J].J Spinal Disord Tech,2014,27(4):E118-E127.
    [11] GU G,ZHANG H,FAN G,et al.Comparison of minimally invasive versus open transforaminal lumbar interbody fusion in two-level degenerative lumbar disease [J].Int Orthop,2013,38(4):817-824.
    [12] BRODANO GB,MARTIKOS K,LOLLI F,et al.Transforaminal lumbar interbody fusion in degenerative disc disease and spondylolisthesis grade i:Minimally invasive versus open surgery [J].J Spinal Disord Tech,2015,28(10):E559-564.
    [13] ZHANG Q,YUAN Z,ZHOU M,et al.A comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion:A literature review and meta-analysis [J].BMC Musculoskel Dis,2014,15(1):2-8.
    [14] KUNZE B,DRASSECK T,KLUBA T.Posterior and transforaminal lumbar interbody fusion (PLIF/TLIF) for the treatment of localized segment degeneration of lumbar spine [J].Z Orthop Unfallchir,2011,149(3):312-316.
    [15] 张良.PLIF与TLIF对腰椎稳定性影响的有限元分析[D].长春:吉林大学,2016:1-41.
    [16] DIVYA V,AMBATI,MS,EDWARD K,et al.Pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion:A finite element study [J].Spine J,2015,15(8):1812-1822.
    [17] 张振军,孙艺萄,廖振华,等.有限元法在腰椎融合术与置换术生物力学研究中应用进展[J].医用生物力学,2018,33(1):126-132.ZHANG ZJ,SUN YT,LIAO ZH,et al.Progress of finite element method applied in biomechanical researches on lumbar fusion and replacement [J].J Med Biomech,2018,33(1):126-132.
    [18] CAPPUCCINO A,CORNWALL GB,TURNER AW,et al.Biomechanical analysis and review of lateral lumbar fusion constructs [J].Spine,2010,35(26 Suppl):S361-S367.
    [19] LAWS CJ,COUGHLIN DG,LOTZ JC,et al.Direct lateral approach to lumbar fusion is a biomechanically equivalent alternative to the anterior approach:An in vitro study [J].Spine,2012,37(10):819-825.
    [20] FOGEL GR,PARIKH RD,RYU SI,et al.Biomechanics of lateral lumbar interbody fusion construts with lateral and posterior plate fixation:Laboratory investigation [J].J Neurosurg Spine,2014,20(3):1-7.
    [21] WAUTHLE R,VAN DSJ,AMIN YS,et al.Additively manufactured porous tantalum implants [J].Acta Biomater,2015,14:217-225.
    [22] CAMPOLI G,BORLEFFS MS,YAVARI SA,et al.Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing [J].Mater Design,2013,49:957-965.
    [23] ISO 13314:2011.Mechanical testing of metals.Ductility testing.Compression test for porous and cellular metals [EB/OL].https://www.iso.org/standard/53669.html.
    [24] LEWIS G.Properties of open-cell porous metals and alloys for orthopaedic applications [J].J Mater Sci:Mater Med,2013,24(10):2293-2325.
    [25] ZHANG ZJ,FOGEL GR,LIAO ZH,et al.Biomechanical analysis of lumbar interbody fusion cages with various lordotic angles:A finite element study [J].Comput Method Biomec,2018,21:247-254.
    [26] AMBATI DV,WRIGHT EK,LEHMAN RA,et al.Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion:A finite element study [J].Spine J,2015,15(8):1812-1822.
    [27] SHIRAZI-ADL A,AHMED AM,SHRIVASTAVA SC.Mechanical response of a lumbar motion segment in axial torque alone and combined with compression [J].Spine,1986,11(9):914-927.
    [28] ZHONG ZC,WEI SH,WANG JP,et al.Finite element analysis of the lumbar spine with a new cage using a topology optimization method [J].Med Eng Phys,2006,28(1):90-98.
    [29] SCHMIDT H,HEUER F,DRUMM J,et al.Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment [J].Clin Biomech,2007,22(4):377-384.
    [30] DREISCHARF M,ZANDER T,SHIRAZI-ADL A,et al.Comparison of eight published static finite element models of the intact lumbar spine:Predictive power of models improves when combined together [J].J Biomech,2014,47(8):1757-1766.
    [31] AYTURK UM,PUTTLITZ CM.Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine [J].Comput Method Biomec,2011,14(8):695-705.
    [32] XIAO ZT,WANG LY,GONG H,et al.Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis [J].Biomed Eng Online,2012,11(1):1-11.
    [33] CHOSA E,GOTO K,TOTORIBE K,et al.Analysis of the effect of lumbar spine fusion on the superior adjacent intervertebral disk in the presence of disk degeneration,using the three-dimensional finite element method [J].J Spinal Disord Tech,2004,17(2):134-139.
    [34] LIU XL,MA J,PARK P,et al.Biomechanical comparison of multilevel lateral interbody fusion with and without supplementary instrumentation:A three-dimensional finite element study [J].BMC Musculoskel Dis,2017,18(1):1-11.
    [35] SCHMIDT H,GALBUSERA F,ROHLMANN A,et al.Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension:A finite element analysis [J].Eur Spine J,2012,21(Suppl 5):S663-S674.
    [36] CHOI J,SHIN D,KIM S.Biomechanical effects of the geometry of ball-and-socket artificial disc on lumbar spine:A finite element study [J].Spine,2017,42(6):E332-E339.
    [37] VADAPALLI S,SAIRYO K,GOEL VK,et al.Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion:A finite element study [J].Spine,2006,31(26):992-998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700