基于高通量测序的人工湿地微生物群落分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-throughput Sequencing Analysis of the Bacterial Communities in Constructed Wetland
  • 作者:范海青 ; 王凌文 ; 王丹 ; 殷操
  • 英文作者:Fan Haiqing;Wang Lingwen;Wang Dan;Yin Cao;Institute of Zhejiang Metallurgical Design & Research;
  • 关键词:人工湿地 ; 农村生活污水处理 ; 细菌群落结构 ; 高通量测序 ; 16 ; s ; rRNA ; PICRUSt基因预测
  • 英文关键词:constructed wetland;;rural domestic sewage treatment;;bacterial community structure;;high-throughput sequencing;;16S rRNA;;PICRUSt gene prediction
  • 中文刊名:KJTB
  • 英文刊名:Bulletin of Science and Technology
  • 机构:浙江省冶金研究院有限公司;
  • 出版日期:2019-02-28
  • 出版单位:科技通报
  • 年:2019
  • 期:v.35;No.246
  • 基金:浙江省科技计划公益技术研究农业项目(No.2015C32010)
  • 语种:中文;
  • 页:KJTB201902042
  • 页数:7
  • CN:02
  • ISSN:33-1079/N
  • 分类号:221-227
摘要
为了深入探索农村生活污水人工湿地中微生物群落的物种多样性、结构多样性和功能多样性,利用高通量测序技术对系统中土壤、植物根系及砾石区域细菌16S rRNA的V3-V4区进行深度测序及PICRUSt基因功能预测。结果显示,农村生活污水人工湿地处理系统中,土壤、根系及砾石生物膜上细菌群落多样性、组成和功能各有不同,而植物根系群落结构的演变更有利于污水处理:根系细菌群落物种多样性(OTU系列总数和Shannon指数)和优势细菌种类均大于砾石或土壤;两种湿地植物(滴水观音和美人蕉)的根系细菌群落表现出一定的差异:美人蕉根系中以产碱杆菌属(27%)、黄杆菌属(29%)、溶杆菌属(30%)和假单胞菌属(13%)为优势细菌,滴水观音根系以乳球菌属(28%)、黄杆菌属(20%)和假单胞菌属(34%)为优势细菌;KEGG结果表明根系代谢功能与土壤及砾石区均存在差异(p<0.05)差异且KO基因预测证实根系代谢能力最大。COG功能预测显示美人蕉根系代谢强度高于滴水观音。农村生活污水处理的主要代谢酶基因,如双加氧酶、脱氢酶、磷酸盐脱氢酶、脲酶、硝酸还原酶和过氧化氢酶基因中脱氢酶基因的丰度最高,并且美人蕉根系的功能基因丰度值最大。这些结果为高效构建处理农村生活污水生态系统提供理论依据。
        To explore the diversity of species, composition and microbial function in the bacterial community of the constructed wetland for rural sewage treatment,different areas including wetland soil, plant roots and the surface of gravels were detected by using high-throughput sequencing with 16 S rRNA and PICRUSt gene prediction. The results showed that bacterial diversities, dominant OTUs of bacterial genera and KEGG genes, COG genes, as well as several KO genes of the two plant roots were all greater than that of wetland soil or the surface of gravels, showing the plant root a primary niche for bacteria dealing with rural sewage. The analysis of Shannon indices inferred a greater bacterial diversity of the Canna root than the corresponding soil or the surface of gravels as well as the Dishlia roots. The dominant OTUs in bacterial genera of Canna root differed with that of Dishlia. For instance, the Canna root was predominant with the genus Alkaligenes(27%), Flavobacterium(29%), Lysobacter(30%) and Pseudomonas(13%), while the Dishlia root with Lactococcus(28%), Flavobacterium(20%), and Pseudomonas(34%). In addition, total relative abundance of genes(dehydrogenase, dioxygenase, phosphate dehydrogenase, urease, nitrate reductase and catalase) in the Canna root was greater than that of the Dishlia root. These results indicated the greater bacterial community structure and function in the Canna root than other areas of the constructed wetland. The findings of this study provide insights into a more efficient constructed wetland for sewage treatment.
引文
[1] 张翔,闫茂仓,肖国强,等.虾-贝-红树林耦合循环水养殖系统中微生物群落分析[J].水生生物学报,2016,40(3):557-564.
    [2] 张彩莹,王岩,王妍艳.潜流人工湿地对畜禽养殖废水的净化效果[J].农业工程学报,2013,29(17):160-168.
    [3] 高锋,杨朝晖,李晨,等.秋茄人工湿地净化循环海水养殖废水效果[J].农业工程学报,2012,28(17):192-198.
    [4] 范志峰,李平,王丽卿,等.复合型人工湿地系统在农业面源污染水处理以上的应用[J].上海海洋大学学报,2010,19(2):259-264.
    [5] Faulwetter J L, Gagnon V, Sundberg C, et al. Microbial processes influencing performance of treatment wetlands: A review[J].Ecological Engineering,2009,35(6):987-1004.
    [6] 周元清,李秀珍,李淑英,等.不同类型人工湿地微生物群落的研究进展[J].生态学杂志,2011,30(6):1251-1257.
    [7] Ibekwe A M, Grieve C M, Lyon S R. Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent[J]. Applied and Environmental Microbiology,2003,69(9):5060-5069.
    [8] 雷旭,李冰,李晓,等.复合垂直流人工湿地系统中不同植物根际微生物群落结构[J].生态学杂志,2015,34(5):1373-1381.
    [9] Baptista J C, Davenport R J, Donnelly T, et al. The microbial diversity of laboratory- scale wetlands appears to be randomly assembled[J]. Water research, 2008, 42(12): 3182-3190.
    [10] Walsh K A, Hill T C J, Moffett B F, et al. Molecular characterisation of bacteria in a wetland used to remove ammoniacal-N from landfill leachate[J]. Waste management & research, 2002, 20(6): 529-535.
    [11] 王林,李冰,朱健.高通量测序技术在人工湿地微生物多样性研究中的研究进展[J].中国农学通报,2016,32(5):10-15.
    [12] 常军军,吴苏青,梁康,等.复合垂直流人工湿地微生物特征对典型污水的响应差异[J].环境科学研究,2016,29(8):1200-1206.
    [13] 刘建丽,武琳慧,赵吉,等.高通量测序技术在湿地微生物研究中的应用[J].世界生态学,2014(3):56-63.
    [14] Wang Lingwen,Li Feng,Zhan Yu,et al.Shifts in microbial community structure during in situ surfactant enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil[J].Environmental Science and Pollution Research,2016,23:14451-14461.
    [15] Langille M,Zaneveld J,Caporaso J,et al.Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J].Nature Biotechnology,2013,31:814-821.
    [16] Blaxter M,Mann J,Chapman T,et al.Defining operational taxonomic units using DNA barcode data[J].Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,2005,360:1935-1943.
    [17] 赵晓芬.几种湿地植物根际微生物的分离鉴定及其污水净化效果的研究[D].青岛:中国海洋大学,2012.
    [18] 邓景韬.凤凰河人工湿地中主要细菌的分离筛选、生理生化特性鉴定及分子鉴定[D].四川:四川师范大学,2009.
    [19] 王成林,周巧红,王亚芬,等.一株异养硝化细菌的分离鉴定及其亚硝化作用研究[J].农业环境科学学报2008,27(3):1146-1150.
    [20] 阳承胜,史秀华,张干.宽叶香蒲人工湿地水体生物生态学调查[J].深圳大学学报褒工版,2007,24(3):294-298.
    [21] 张琼琼,黄兴如,郭逍宇.基于T-RFLP技术的不同水位梯度植物根际细菌群落多样性特征分析[J].生态学报,2016,36(14):4518-4530.
    [22] 邸琰茗,王广煊,黄兴如,等.再生水补水对河道底泥细菌群落组成与功能的影响[J].环境科学,2017,38(2):1-8.
    [23] Gschwendtner S,Esperschutz J,Buegger F,et al.Effects of genetically modified starch metabolism in potato plants on photosynthate fluxes into the rhizosphere and on microbial degraders of root exudates[J].FEMS Microbiology Ecology,2011,76:564-575.
    [24] 杨可昀,宋海亮,黄诗蓓,等.根系分泌物调控对人工湿地去除雌激素的影响[J].环境科学研究,2016,29(1):59-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700