热处理过程中大豆11S球蛋白解离缔合行为研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Progress in the Dissociation-Association Behavior of 11S Glycinin during Heat Treatment
  • 作者:曾剑华 ; 杨杨 ; 刘琳琳 ; 石彦国 ; 张娜 ; 朱秀清
  • 英文作者:ZENG Jianhua;YANG Yang;LIU Linlin;SHI Yanguo;ZHANG Na;ZHU Xiuqing;Key Laboratory for Food Science and Engineering of Heilongjiang Province, Key Laboratory for Food Science and Engineering of Colleges and Universities in Heilongjiang Province, College of Food Engineering, Harbin University of Commerce;
  • 关键词:大豆球蛋白 ; 热处理 ; 解离缔合行为 ; 凝胶
  • 英文关键词:glycinin;;heat treatment;;dissociation-association behavior;;gel
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:哈尔滨商业大学食品工程学院黑龙江省普通高校食品科学与工程重点实验室黑龙江省谷物食品与综合加工重点实验室;
  • 出版日期:2018-10-12 17:27
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.600
  • 基金:“十三五”国家重点研发计划重点专项(2016YFD0400402);; 黑龙江省自然科学基金重点项目(ZD2019C005);; 国家自然科学基金面上项目(31871747)
  • 语种:中文;
  • 页:SPKX201911043
  • 页数:10
  • CN:11
  • ISSN:11-2206/TS
  • 分类号:311-320
摘要
解离缔合反应是大豆蛋白在外界因素影响下蛋白质分子高级结构发生解聚或聚合的过程,是目前植物蛋白领域研究的热点。通常通过热处理使大豆蛋白发生解离缔合反应而改变其构象从而获得理想功能性质;大豆11S球蛋白是大豆蛋白主要成分之一,因此11S球蛋白的热解离缔合行为一定程度上决定了大豆制品的后期加工特性、品质及其应用范围。本文概述了11S球蛋白基本结构的最新研究进展;基于11S球蛋白热处理过程中蛋白浓度差异引起的体系性状变化,综述了离子强度、pH值、大豆7S球蛋白以及大豆脂蛋白对其解离缔合行为的影响;并分析了相应条件下11S球蛋白解离缔合反应机制,以期阐明在热处理过程中11S球蛋白的解离缔合反应机制,为将大豆蛋白解离缔合反应控制在预期范围内,获得高品质的大豆蛋白食品提供理论依据。
        The dissociation-association reaction of soybean proteins is the process of depolymerization or polymerization of their higher order structures that is influenced by external factors and is currently a research hotspot of plant proteins.The ideal functional properties of soybean proteins can be obtained by subjecting them to heat treatment, which contributes to conformational changes in soybean proteins by dissociation-association reaction. 11S glycinin is one of the major components of soybean protein. Therefore, the post-processing characteristics, quality and application range of soybean products are determined to a certain extent by the thermal dissociation-association behavior of 11S glycinin. In this paper,the latest progress in the understanding of the fundamental structure of 11S globulin is summarized. Considering that the colloidal properties and dissociation-association behavior of 11S glycinin vary during heating process, depending upon its concentration, the effects of ionic strength, pH, 7S β-conglycinin and soybean lipoprotein on the dissociation-association behavior of 11S glycinin are elucidated, and the underlying mechanism is interpreted. This review hopes to provide theoretical support for controlling the dissociation-association reaction of soybean proteins within the expected range and hence obtaining high-quality soybean protein products.
引文
[1]DE CáSSIA NOGUEIRA A,STEEL C J.Protein enrichment of biscuits:a review[J].Food Reviews International,2018,34(8):796-809.DOI:10.1080/87559129.2018.1441299.
    [2]NISHINARI K,FANG Y,NAGANO T,et al.Soy as a food ingredient[M]//YADA R Y.Proteins in food processing.Cambridge:Woodhead Publishing,2018:149-186.DOI:10.1016/B978-0-08-100722-8.00007-3.
    [3]WU N N,WANG L J,YANG X Q,et al.Comparison of flavor volatiles and some functional properties of different soy protein products[J].Journal of the American Oil Chemists’Society,2011,88(10):1621-1631.DOI:10.1007/s11746-011-1825-9.
    [4]THRANE M,PAULSEN P V,ORCUTT M W,et al.Soy protein:impacts,production,and applications[M]//NADATHUR S,WANASUNDARA J P D,SCANLIN L.Sustainable protein sources.New York:Academic Press,2017:23-45.DOI:10.1016/B978-0-12-802778-3.00002-0.
    [5]SILVáN J M,AMIGO-BENAVENT M,DOLORES DEL CASTILLO M.Antioxidant properties of soy-based drinks and effects of processing[M]//PREEDY V.Processing and impact on antioxidants in beverages.Massachusetts:Academic Press,2014:225-232.DOI:10.1016/B978-0-12-404738-9.00023-4.
    [6]MEDIC J,ATKINSON C,HURBURGH C R.Current knowledge in soybean composition[J].Journal of the American Oil Chemists’Society,2014,91(3):363-384.DOI:10.1007/s11746-013-2407-9.
    [7]NISHINARI K,FANG Y,GUO S,et al.Soy proteins:a review on composition,aggregation and emulsification[J].Food Hydrocolloids,2014,39(2):301-318.DOI:10.1016/j.foodhyd.2014.01.013.
    [8]TANG C H.Emulsifying Properties of soy proteins:a critical review with emphasis on the role of conformational flexibility[J].Critical Reviews in Food Science and Nutrition,2015,57(12):2636-2679.DOI:10.1080/10408398.2015.1067594.
    [9]PENG I C,QUASS D W,DAYTON W R,et al.The physicochemical and functional properties of soybean 11S globulin:a review[J].Cereal Chemistry,1984,61(6):480-490.
    [10]GAO Z H,ZHANG Y H,FANG B,et al.The effects of thermalacid treatment and crosslinking on the water resistance of soybean protein[J].Industrial Crops and Products,2015,74:122-131.DOI:10.1016/j.indcrop.2015.04.026.
    [11]SAMOTO M,MAEBUCHI M,MIYAZAKI C,et al.Abundant proteins associated with lecithin in soy protein isolate[J].Food Chemistry,2007,102(1):317-322.DOI:10.1016/j.foodchem.2006.05.054.
    [12]PREECE K E,HOOSHYAR N,ZUIDAM N J.Whole soybean protein extraction processes:a review[J].Innovative Food Science and Emerging Technologies,2017,43:163-172.DOI:10.1016/j.ifset.2017.07.024.
    [13]MENG S,CHANG S,GILLEN A M,et al.Protein and quality analyses of accessions from the USDA soybean germplasm collection for tofu production[J].Food Chemistry,2016,213:31-39.DOI:10.1016/j.foodchem.2016.06.046.
    [14]UTSUMI S.Structure-function relationships of soy proteins[M]//DAMODARAN S.Food proteins and their applications.New York:CRC Press,1997:257-291.
    [15]ADACHI M,KANAMORI J,MASUDA T,et al.Crystal structure of soybean 11S globulin:glycinin A3B4,homohexamer[J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(12):7395-7400.DOI:10.1073/pnas.0832158100.
    [16]ADACHI M,TAKENAKA Y,GIDAMIS A B,et al.Crystal structure of soybean proglycinin A1aB1b homotrimer[J].Journal of Molecular Biology,2001,305(2):291-305.DOI:10.1006/jmbi.2000.4310.
    [17]TANDANG-SILVAS M R G,FUKUDA T,FUKUDA C,et al.Conservation and divergence on plant seed 11S globulins based on crystal structures[J].Biochimica et Biophysica Acta,2010,1804(7):1432-1442.DOI:10.1016/j.bbapap.2010.02.016.
    [18]DICKINSON C D,HUSSEIN E H A,NIELSEN N C.Role of posttranslational cleavage in glycinin assembly[J].Plant Cell,1989,1(4):459-469.
    [19]JUNG R,NAM Y W,SAALBACH I,et al.Role of the sulfhydryl redox state and disulfide bonds in processing and assembly of 11S seed globulins[J].Plant Cell,1997,9(11):2037-2050.DOI:10.2307/387056.
    [20]CHEN N N,ZHAO M M,CHASSENIEUX C,et al.structure of selfassembled native soy globulin in aqueous solution as a function of the concentration and the pH[J].Food Hydrocolloids,2016,56:417-424.DOI:10.1016/j.foodhyd.2015.12.028.
    [21]KOSHIYAMA I,HAMANO M,FUKUSHIMA D.A heat denaturation study of the 11S globulin in soybean seeds[J].Food Chemistry,1981,6(4):309-322.DOI:10.1016/0308-8146(81)90004-2.
    [22]LAKEMOND C M,DE JONGH H H,HESSING M,et al.Heat denaturation of soy glycinin:influence of pH and ionic strength on molecular structure[J].Journal of Agricultural and Food Chemistry,2000,48(6):1991-1995.DOI:10.1021/jf9908704.
    [23]PIZONES RUIZ-HENESTROSA V M,MARTINEZ M J,PATINO J M R,et al.A dynamic light scattering study on the complex assembly of glycinin soy globulin in aqueous solutions[J].Journal of the American Oil Chemists’Society,2012,89(7):1183-1191.DOI:10.1007/s11746-012-2029-7.
    [24]RENKEMA J M S,LAKEMOND C M M,DE JONGH H H J,et al.The effect of pH on heat denaturation and gel forming properties of soy proteins[J].Journal of Biotechnology,2000,79(3):223-230.DOI:10.1016/S0168-1656(00)00239-X.
    [25]JACOBA M S,RENKEMA H G,VAN VLIET T,et al.Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions[J].Journal of Agricultural and Food Chemistry,2002,50(21):6064-6071.DOI:10.1021/jf020061b.
    [26]YAMAGISHI T,YAMAUCHI F,SHIBASAKI K.Isolation and partial characterization of heat-denatured products of soybean 11S globulin and their analysis by electrophoresis[J].Agricultural and Biological Chemistry,1980,44(7):1575-1582.DOI:10.1080/00021369.1980.10864172.
    [27]KIM K S,KIM S,YANG H J,et al.Changes of glycinin conformation due to pH,heat and salt determined by differential scanning calorimetry and circular dichroism[J].International Journal of Food Science and Technology,2004,39(4):385-393.DOI:10.1111/j.1365-2621.2004.00795.x.
    [28]齐宝坤,江连洲,王欢,等.离子强度对大豆11S球蛋白表面疏水性及结构的影响[J].食品科学,2018,39(8):39-44.DOI:10.7506/spkx1002-6630-201808007.
    [29]XIAO J,SHI C,ZHANG L,et al.Multilevel structural responses ofβ-conglycinin and glycinin under acidic or alkaline heat treatment[J].Food Research International,2016,89(Pt 1):540-548.DOI:10.1016/j.foodres.
    [30]TANG C H,WANG C S.Formation and characterization of amyloidlike fibrils from soyβ-conglycinin and glycinin[J].Journal of Agricultural and Food Chemistry,2010,58(20):11058-11066.DOI:10.1021/jf1021658.
    [31]JIANG Jiang,XIONG Youling L.,CHEN Jie.Role ofβ-conglycinin and glycinin subunits in the pH-shifting-induced structural and physicochemical changes of soy protein isolate[J].Journal of Food Science,2011,76(2):C293-C302.DOI:10.1111/j.1750-3841.2010.02035.x.
    [32]GERMAN B,DAMODARAN S,KINSELLA J E.Thermal dissociation and association behavior of soy proteins[J].Journal of Agricultural and Food Chemistry,1982,30(5):807-811.DOI:10.1021/jf00113a002.
    [33]YAMAGISHI T,MIYAKAWA A,NODA N,et al.Isolation and electrophoretic analysis of heat-induced products of mixed soybean7S and 11S globulins[J].Agricultural and Biological Chemistry,1983,47(6):1229-1237.DOI:10.1080/00021369.1983.10866082.
    [34]UTSUMI S,DAMODARAN S,KINSELLA J E.Heat-induced interactions between soybean proteins:preferential association of 11Sbasic subunits and beta subunits of 7S[J].Journal of Agricultural and Food Chemistry,1984,32(6):1406-1412.DOI:10.1021/jf00126a047.
    [35]IWABUCHI S,YAMAUCHI F.Determination of glycinin and betaconglycinin in soybean proteins by immunological methods[J].Journal of Agricultural and Food Chemistry,1987,35(2):200-205.DOI:10.1021/jf00074a009.
    [36]DAMODARAN S,KINSELLA J E.Effect of conglycinin on the thermal aggregation of glycinin[J].Journal of Agricultural and Food Chemistry,1982,30(5):812-817.DOI:10.1021/jf00113a003.
    [37]袁德保.大豆蛋白热聚集行为及其机理研究[D].广州:华南理工大学,2010:110-133.
    [38]HE Xiuting,YUAN Debao,WANG Jinmie,et al.Thermal aggregation behaviour of soy protein:characteristics of different polypeptides and sub-units[J].Journal of the Science of Food and Agriculture,2016,96(4):1121-1131.DOI:10.1002/jsfa.7184.
    [39]何秀婷.大豆7S蛋白热聚集体的形成及其性质研究[D].广州:华南理工大学,2015:90-100.
    [40]郭健.大豆蛋白热聚集行为控制及其结构表征的研究[D].广州:华南理工大学,2012:17-36.
    [41]GUO Jian,YANG Xiaoquan,HE Xiuting,et al.Limited aggregation behavior ofβ-conglycinin and its terminating effect on glycinin aggregation during heating at pH 7.0[J].Journal of Agricultural and Food Chemistry,2012,60(14):3782-3791.DOI:10.1021/jf300409y.
    [42]ANDREWS J M,ROBERTS C J.A lumry-eyring nucleated polymerization model of protein aggregation kinetics:1.aggregation with pre-equilibrated unfolding[J].Journal of Physical Chemistry B,2007,111(27):7897-7913.DOI:10.1021/jp070212j.
    [43]MCCANN T H,GUYON L,FISCHER P,et al.Rheological properties and microstructure of soy-whey protein[J].Food Hydrocolloids,2018,82:434-441.DOI:10.1016/j.foodhyd.2018.04.023.
    [44]MATSUMURA Y,SIRISON J,ISHI T,et al.Soybean lipophilic proteins:origin and functional properties as affected by interaction with storage proteins[J].Current Opinion in Colloid&Interface Science,2017,28:120-128.DOI:10.1016/j.cocis.2017.04.004.
    [45]SIRISON J,MATSUMIYA K,SAMOTO M,et al.Solubility of soy lipophilic proteins:comparison with other soy protein fractions[J].Bioscience Biotechnology and Biochemistry,2017,81(4):790-802.DOI:10.1080/09168451.2017.1282808.
    [46]BOATRIGHT W L,HETTIARACHCHY N S.Effect of lipids on soy protein isolate solubility[J].Journal of the American Oil Chemists’Society,1995,72(12):1439-1444.DOI:10.1007/BF02577835.
    [47]CHEN K I,ERH M H,SU N W,et al.Soyfoods and soybean products:from traditional use to modern applications[J].Applied Microbiology and Biotechnology,2012,96(1):9-22.DOI:10.1007/s00253-012-4330-7.
    [48]MORI T,NAKAMURA T,UTSUMI S.Gelation mechanism of soybean 11S globulin:formation of soluble aggregates as transient intermediates[J].Journal of Food Science,1982,47(1):26-30.DOI:10.1111/j.1365-2621.1982.tb11019.x.
    [49]CHEN N N,ZHAO M M,CHASSENIEUX C,et al.Thermal aggregation and gelation of soy globulin at neutral pH[J].F o o d H y d r o c o l l o i d s,2 0 1 6,6 1:7 4 0-7 4 6.D O I:1 0.1 0 1 6/j.foodhyd.2016.06.028.
    [50]CHEN N N,CHASSENIEUX C,NICOLAI T.Kinetics of NaCl induced gelation of soy protein aggregates:effects of temperature,aggregate size,and protein concentration[J].Food Hydrocolloids,2018,77:66-74.DOI:10.1016/j.foodhyd.2017.09.021.
    [51]CHEN Nannan,ZHAO Mouming,NIEPCERON F,et al.The effect of the pH on thermal aggregation and gelation of soy proteins[J].Food Hydrocolloids,2017,66:27-36.DOI:10.1016/j.foodhyd.2016.12.006.
    [52]CHEN Nannan,ZHAO Mouming,CHASSENIEUX C,et al.The effect of adding NaCl on thermal aggregation and gelation of soy protein isolate[J].Food Hydrocolloids,2017,70:88-95.DOI:10.1016/j.foodhyd.2017.03.024.
    [53]YAMAGISHI T,YAMAUCHI F,KAZUO S.Effect of sulphydryl and disulphide compounds on the formation and quality of thermal aggregates of soya bean 11S globulin[J].Journal of the Science of Food and Agriculture,1982,33(11):1092-1100.DOI:10.1002/jsfa.2740331106.
    [54]UMEYA J,YAMAUCHI F,SHIBASAKI K.Hardening and softening properties of soybean protein-water suspending systems[J].Agricultural and Biological Chemistry,1980,44(6):1321-1326.DOI:10.1271/bbb1961.44.1321.
    [55]LAKEMOND C M M,DE JONGH H H J,PAQUES M,et al.Gelation of soy glycinin;influence of pH and ionic strength on network structure in relation to protein conformation[J].Food Hydrocolloids,2003,17(3):365-377.DOI:10.1016/S0268-005X(02)00100-5.
    [56]YAMAGISHI T,TAKAHASHI N,YAMAUCHI F.Covalent polymerization of acidic subunits on heat-induced gelation of soybean glycinin[J].Cereal Chemistry,1987,64(4):207-212.
    [57]YAMAGISHI T,TAKAHASHI N,TABATA H,et al.Gel formation mechanism of soybean glycinin(II):evidence for polymerization of acidic subunit as a thermal gelation initiator[J].Hachinohe National College of Technology,2006,41:73-78.
    [58]YUAN D B,YANG X Q,TANG C H,et al.Physicochemical and functional properties of acidic and basic polypeptides of soy glycinin[J].Food Research International,2009,42(5/6):700-706.DOI:10.1016/j.foodres.2009.02.005.
    [59]YAMAGISHI T,YAMAUCHI F,SHIBASAKI K.Electrophoretical and differential thermal analysis of soybean 11S globulin heated in the presence of N-ethylmaleimide[J].Agricultural and Biological Chemistry,1981,45(7):1661-1668.DOI:10.1271/bbb1961.45.1661.
    [60]GERMAN B,DAMODARAN S,KINSELLA J E.Thermal dissociation and association behavior of soy proteins[J].Journal of Agricultural and Food Chemistry,1982,30(5):117-127.DOI:10.1021/jf00113a002.
    [61]BHUSHAN R,ARYA U.Reversed-phase high-performance liquid chromatographic,size exclusion chromatographic and polyacrylamide gel electrophoretic studies of glycinin:evidence for molecular species and their association-dissociation[J].Biomedical Chromatography,2007,21(12):1245-1251.DOI:10.1002/bmc.876.
    [62]CLARK A H,JUDGE F J,RICHARDS J B,et al.Electron microscopy of network structures in thermally-induced globular protein gels[J].International Journal of Peptide and Protein Research,1981,17(3):380-392.DOI:10.1111/j.1399-3011.1981.tb02005.x.
    [63]HERMANSSON A M.Structure of soya glycinin and conglycinin gels[J].Journal of the Science of Food and Agriculture,1985,36(9):822-832.DOI:10.1002/jsfa.2740360911.
    [64]NAKAMURA T,UTSUMI S,MORI T.Network structure formation in thermally induced gelation of glycinin[J].Journal of Agricultural and Food Chemistry,1984,32(2):349-352.DOI:10.1021/jf00122a042.
    [65]PENG X Y,REN C G,GUO S T.Particle formation and gelation of soymilk:effect of heat[J].Trends in Food Science&Technology,2016,54:138-147.DOI:10.1016/j.tifs.2016.06.005.
    [66]SHIMADA K,MATSUSHITA S.Gel Formation of soybean 7S and11S proteins[J].Agricultural and Biological Chemistry,1980,44(3):637-641.DOI:10.1080/00021369.1980.10863995.
    [67]WANG X,KOMATSU S.Improvement of soybean products through the response mechanism analysis using proteomic technique[J].Advances in Food and Nutrition Research,2017,82:117-148.DOI:10.1016/bs.afnr.2016.12.006.
    [68]NIETO-NIETO T V,WANG Y X,OZIMEK L,et al.Inulin at low concentrations significantly improves the gelling properties of oat protein:a molecular mechanism study[J].Food Hydrocolloids,2015,50:116-127.DOI:10.1016/j.foodhyd.2015.03.031.
    [69]CATSIMPOOLAS N,CAMPBELL T G,MEYER E W.Associationdissociation phenomena in glycinin[J].Archives of Biochemistry and Biophysics,1969,131(2):577-586.DOI:10.1016/0003-9861(69)90432-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700