黄土高原冬小麦产量潜力时空分布特征及其影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial-temporal distribution characteristics of winter wheat potential yieldsand its influencing factors in the Loess Plateau
  • 作者:张玲玲 ; 冯浩 ; 董勤各
  • 英文作者:ZHANG Ling-ling;FENG Hao;DONG Qin-ge;Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources;University of Chinese Academy of Sciences;Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University;
  • 关键词:冬小麦 ; APSIM-Wheat模型 ; 潜在产量 ; 雨养产量 ; 黄土高原
  • 英文关键词:winter wheat;;APSIM-Wheat model;;potential yield;;water-limited yield;;Loess Plateau
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:中国科学院水利部水土保持研究所;中国科学院大学;西北农林科技大学中国旱区节水农业研究院;
  • 出版日期:2019-05-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:v.37;No.174
  • 基金:国家高技术研究发展计划(863计划)项目(2013AA102904);; 国家自然科学基金项目(51879224);国家自然科学基金项目(51609237)
  • 语种:中文;
  • 页:GHDQ201903036
  • 页数:8
  • CN:03
  • ISSN:61-1088/S
  • 分类号:273-280
摘要
研究潜在产量的时空分布特征及其影响因素,有助于定量估计区域内作物产量的可提升空间,揭示限制产量提高的因素,明确未来提高作物产量的重点区域和可行措施。利用中国科学院长武黄土高原农业生态试验站2004-2008年的冬小麦数据资料,验证了APSIM-Wheat模型在黄土高原的适用性。结合黄土高原1974-2016年逐日气候资料和农业气象站的作物观测资料,分析该区冬小麦潜在产量和雨养产量的时空变化特征,明确冬小麦不同等级产量潜力的影响因子及影响程度。研究结果表明:42 a来在品种、管理措施不变条件下,黄土高原冬小麦潜在产量和雨养产量的平均值分别是6 554.19 kg·hm~(-2)和3 584 kg·hm~(-2),变化速率分别为每10 a下降146.59 kg·hm~(-2)和65.11 kg·hm~(-2)。气候变化背景下,对黄土高原冬小麦潜在产量影响最大的为生长季内的最高温度和太阳辐射,分别呈负相关关系(P<0.05)和正相关关系(P<0.05),相关系数分别为0.36和0.35;而水分是决定雨养产量的关键因素,呈显著的正向效应(P<0.05),相关系数为0.47。充分灌溉条件下,甘肃东南部和山西中部属于冬小麦低产且不稳产区。雨养条件下,山西中部和东北部为冬小麦低产且不稳产区。因此,建议通过栽培技术变革或者选择新品种来提升低产不稳产地区的冬小麦产量。
        A study on the spatial and temporal distribution characteristics of potential yield and its influencing factors could help to quantitatively estimate the potential of crop yield in the region, reveal the factors that limit crop yield, and then identify key areas and possible measures to increase crop yields in the future. The Agricultural Production Systems Simulator(APSIM)-Wheat model was validated using the winter wheat data from Changwu Agro-ecological Experiment Station of the Chinese Academy of Sciences on Loess Plateau from 2004 to 2008, it performed well in simulating leaf area index, yield, and above-ground biomass of winter wheat. Hence, this model has good applicability in Loess Plateau. Combining meteorological data and agro-meteorological observations during 1974-2016 in winter wheat planting areas of Loess Plateau. The spatial-temporal distribution characteristics were analyzed in potential and water-limited yield of winter wheat, and then explored the impacts of climatic factors on potential and water-limited yield. The results showed that under the unchanged condition of variety and management measures from 1974 to 2016, the average potential yield and water-limited yield of winter wheat on the Loess Plateau were 6554.19 kg·hm~(-2) and 3584 kg·hm~(-2). In the past 42 years, the potential yield and water limited yield decreased by 146.59 kg·hm~(-2) and 65.11 kg·hm~(-2 )·(10 a)~(-1), respectively. The increase in temperature caused the potential yield of winter wheat to decrease(P<0.05), and the increase in radiation increased the potential yield(P<0.05). The correlation coefficients were 0.36 and 0.35, respectively. Due to the absence of additional irrigation water supply during the winter wheat growing season, precipitation has the greatest impact on the water limited yield on the Loess Plateau, showing a significant positive effect(P<0.05) with a correlation coefficient of 0.47. Under the condition of sufficient irrigation, southeastern Gansu and central Shanxi were areas with low and unstable yields. Under the rain-feed condition, central and northeastern Shanxi were areas with low and unstable production. Therefore, we proposed to improve winter wheat yield in low and unstable yield areas through cultivation technology changes or selection of new varieties.
引文
[1] Evans L T,Fischer A.Yield Potential:Its definition,measurement,and significance[J].Crop Science,1999,39(6):1544-1551.
    [2] Lobell D B,Cassman K G,Field C B.Crop yield gaps:Their importance,magnitudes,and causes[J].Annual Review of Environment and Resources,2009,34(1):179-204.
    [3] Van ittersum M K,Cassman K G,Grassini P,et al.Yield gap analysis with local to global relevance:A review[J].Field Crops Research,2013,143(1):4-17.
    [4] Lobell D B,Ortizmonasterio J I,Addams C L,et al.Soil,climate,and management impacts on regional wheat productivity in Mexico from remote sensing[J].Agricultural & Forest Meteorology,2002,114(1-2):31-43.
    [5] Zhang J.China's success in increasing per capita food production[J].Journal of Experimental Botany,2011,62(11):3707-3711.
    [6] 高亮之.农业模型研究与21世纪的农业科学[J].山东农业科学,2001(1):43-46.
    [7] Pasuquin J M,Pampolino M F,Witt C,et al.Closing yield gaps in maize production in Southeast Asia through site specific nutrient management[J].Field Crops Research,2014,156(2):219-230.
    [8] Guilpart N,Grassini P,Sadras V O,et al.Estimating yield gaps at the cropping system level[J].Field Crops Research,2017,206:21-32.
    [9] 李克南,杨晓光,刘园,等.华北地区冬小麦产量潜力分布特征及其影响因素[J].作物学报,2012,38(8):1483-1493.
    [10] 刘志娟,杨晓光,吕硕,等.气候变化背景下东北三省春玉米产量潜力时空特征[J].应用生态学报,2018,29(1):103-112.
    [11] 姚玉璧,李耀辉,王毅荣,等.黄土高原气候与气候生产力对全球气候变化的响应[J].干旱地区农业研究,2005,23(2):202-208.
    [12] 逯亚杰.黄土高原地区气候生产潜力估算及其对气候变化的响应[D].杨凌:西北农林科技大学,2016.
    [13] 赵艳霞,王馥棠,刘文泉.黄土高原的气候生态环境、气候变化与农业气候生产潜力[J].干旱地区农业研究,2003,21(4):142-146.
    [14] 王宗明,梁银丽.应用EPIC模型计算黄土塬区作物生产潜力的初步尝试[J].自然资源学报,2002,17(4):481-487.
    [15] 李军,王立祥,邵明安,等.黄土高原地区小麦生产潜力模拟研究[J].自然资源学报,2001,16(2):161-165.
    [16] Wang E,Robertson M J,Hammer G L,et al.Development of a generic crop model template in the cropping system model APSIM[J].European Journal of Agronomy,2002,18(1):121-140.
    [17] Keating B A,Carberry P S,Hammer G L,et al.An overview of APSIM,a model designed for farming systems simulation[J].European Journal of Agronomy,2003,18(3):267-288.
    [18] He L,Asseng S,Zhao G,et al.Impacts of recent climate warming,cultivar changes,and crop management on winter wheat phenology across the Loess Plateau of China[J].Agricultural & Forest Meteorology,2015,200(4):135-143.
    [19] Wallach D,Goffinet B.Mean squared error of prediction in models for studying ecological and agronomic systems[J].Biometrics,1987,43(3):561-573.
    [20] Willmott C J.Some comments on the evaluation of model performance[J].Bulletin of the American Meteorological Society,1982,63(11):1309-1369.
    [21] 王静,杨晓光,吕硕,等.黑龙江省春玉米产量潜力及产量差的时空分布特征[J].中国农业科学,2012,45(10):1914-1925.
    [22] 张园,郝明德,庞玉辉,等.黄土旱作区长武字号小麦的品种性状和品质特性演变规律[J].西北农业学报,2009,18(1):65-70.
    [23] Liu L,Zhu Y,Tang L,et al.Impacts of climate changes,soil nutrients,variety types and management practices on rice yield in East China:A case study in the Taihu region[J].Field Crops Research,2013,149(2):40-48.
    [24] 郑珍.关中地区冬小麦水分产量效应及气候变化条件下产量响应模拟研究[D].杨凌:西北农林科技大学,2016.
    [25] 范兰,吕昌河,于伯华,等.华北平原小麦-玉米两作生产潜力与产量差[J].中国农学通报,2016,32(9):33-40.
    [26] Wang J.Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation[J].Climatic Change,2012,113(3-4):825-840.
    [27] Qin W,Hu C,Oenema O.Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat:a meta-analysis[J].Scientific Reports,2015,5:1-13.
    [28] Xiao D,Tao F.Contributions of cultivars,management and climate change to winter wheat yield in the North China Plain in the past three decades[J].European Journal of Agronomy,2014,52:112-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700