微生物对scCO_2-咸水-砂岩体系中矿物反应的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of microorganisms on the mineral interaction in scCO_2-saline-sandstone system
  • 作者:张凤君 ; 宋云鹏 ; 钟爽 ; 樊凯 ; 李晨阳 ; 张志勇
  • 英文作者:ZHANG Feng-jun;SONG Yun-peng;ZHONG Shuang;FAN Kai;LI Chen-yang;ZHANG Zhi-yong;Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University;Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University;Yulin Environmental Protection Bureau,Shanxi Province;Qianguo County Environmental Protection Bureau,Songyuan City, Jilin Province;
  • 关键词:超临界CO_2 ; 土著微生物 ; 矿物溶蚀 ; 矿物捕获
  • 英文关键词:supercritical CO2;;indigenous microorganisms;;mineral corrosion;;mineral trapping
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:吉林大学地下水资源与环境教育部重点实验室;吉林建筑大学松辽流域水环境教育部重点实验室;陕西省榆林市环境保护局;吉林省松原市前郭县环境保护局;
  • 出版日期:2019-01-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金资助项目(41472214)
  • 语种:中文;
  • 页:ZGHJ201901036
  • 页数:9
  • CN:01
  • ISSN:11-2201/X
  • 分类号:283-291
摘要
利用Illumina MiSeq对sc CO_2-咸水-砂岩体系中微生物16S rRNA基因V3-V4区进行分析,探究高压反应釜体系中微生物对sc CO_2的响应及微生物对矿物反应的作用.结果显示,生物量受pH值影响较大,初始pH值为7.02,生物量11.02×10~6gene/mL,30d时pH值降至5.65,生物量降至0.26×10~6gene/mL;随着矿物溶蚀,90d时pH值增至5.87,生物量增至4.61×10~6gene/mL.群落结构中,phylum Proteobacteria(52.60%(30d),55.34%(90d))与phylum Firmicutes(46.89%(30d),43.89%(90d))为优势菌门.在属水平,30,90d时Exiguobacterium,Citrobacter,Acinetobacter与Pseudomonas为优势菌属.产酸菌(Exiguobacterium,Acinetobacter与Pseudomonas)促进了长石与粘土溶蚀,咸水中K~+,Na~+,Ca~(2+),Mg~(2+),T-Fe浓度高于空白组;铁还原菌(Citrobacter)提高了Fe(Ⅱ)/Fe(Ⅲ)比值;微生物膜对Ca~(2+)?Mg~(2+)?Fe~(2+)具有吸附作用.SEM结果显示,微生物介导下先于空白组出现菱铁矿沉淀. scCO_2~-咸水-砂岩体系中适应菌能促进矿物溶蚀与碳酸盐矿物捕获.
        Through the Illumina MiSeq analysis within V3-V4 region of 16 S rRNA gene, the response of microorganisms to scCO2 and its feedback on the mineral interaction in scCO_2~-saline-sandstone system was investigated. The results showed that biomass was affected by p H value. The initial p H was 7.02 and biomass was 11.02×10~6gene/mL. And the pH dropped to 5.65 and biomass decreased to 0.26×10~6gene/mL at 30th-day. However with the dissolution of minerals, the pH increased to 5.87 and biomass increased to 4.61×10~6gene/mL at 90th-day. In the community structure, phylum Proteobacteria(52.60%(30d), 55.34%(90d)) and phylum Firmicutes(46.89%(30d), 43.89%(90d)) were dominant phylum. At the genus level, Exiguobacterium, Citrobacter, Acinetobacter and Pseudomonas were dominant genus at 30 th and 90th-day. Acid-producing bacteria(Exiguobacterium, Acinetobactera and Pseudomonas) promoted the dissolution of feldspar and clay, and the concentrations of K~+, Na~+, Ca~(2+), Mg~(2+) and T-Fe were higher than those in blank group. Iron-reducing bacteria(Citrobacter) increased the ratio of Fe(Ⅱ)/Fe(Ⅲ). Biofilm showed an adsorption function of Ca~(2+), Mg~(2+) and Fe~(2+). At last, the SEM results showed that the micron-mediated precipitation of siderite appeared before the blank group. Therefore, the adaptable bacteria in the scCO_2~-salt-sandstone system could promote the mineral dissolution and carbonates capture.
引文
[1]Bicocchi G,Vaselli O,Ruggieri G,et al.Chemical alteration and mineral growth under high pCO_2 conditions:Insights from the mineral chemistry of carbonate phases in the Caprese Reservoir(Northern Apennines,central Italy)[J].Chemical Geology,2017,450:81-95.
    [2]De Silva G P D,Ranjith P G,Perera M S A.Geochemical aspects of CO_2 sequestration in deep saline aquifers:A review[J].Fuel,2015,155:128-143.
    [3]刘志坚,史建公,张毅.二氧化碳储存技术研究进展[J].中外能源,2017,22(3):1-9.Liu Z J,Shi J G,Zhang Y.Recent Advances in Storage Technology of Carbon Dioxide[J].Sino-Global Energy,2017,22(3):1-9.
    [4]Xu T F,Sonnenthal E,Spycher N,et al.TOUGHREACT-Asimulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media:Applications to geothermal injectivity and CO_2geological sequestration[J].Computers&Geosciences,2006,32(2):145-165.
    [5]Bosshart N W,Azzolina N A,Ayash S C,et al.Quantifying the effects of depositional environment on deep saline formation CO_2 storage efficiency and rate[J].International Journal of Greenhouse Gas Control,2018,69:8-19.
    [6]Irfan M F,Bisson T M,Bobicki E,et al.CO_2 storage in saline aquifers by dissolution and residual trapping under supercritical conditions:An experimental investigation[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,548:37-45.
    [7]Pedersen K.The deep subterranean biosphere[J].Earth-Science Reviews,1993,34(4):243-260.
    [8]Zhao J,Lu W,Zhang F J,et al.Evaluation of CO_2 solubility-trapping and mineral-trapping in microbial-mediated CO_2-brine-sandstone interaction[J].Marine Pollution Bulletin,2014,85(1):78-85.
    [9]Hicks N,Vik U,Taylor P,et al.Using prokaryotes for carbon capture storage[J].Trends in Biotechnology,2017,35(1):22-32.
    [10]Wragg J,West J M,Bateman K.Potential impact of CO_2 on subsurface microbial ecosystems and implications for the performance of storage reservoirs[J].Energy Procedia,2013,37:800-805.
    [11]张凤君,赵静,王天野,等.土著微生物对CO_2地质储存过程中水岩作用的影响[J].吉林大学学报(地球科学版),2013,43(2):544-551.Zhang F J,Zhao J,Wang T Y,et al.The effect of indigeneous microorganisms on water-rock interaction during the geological Storage of CO_2[J].Journal of Jilin University(Earth Science Edition),2013,43(2):544-551.
    [12]Kirk M F,Altman S J,Santillan E-F U,et al.Interplay between microorganisms and geochemistry in geological carbon storag[J].International Journal of Greenhouse Gas Control,2016,47:386-395.
    [13]Naganuma T,Yukimura K,Todaka N,et al.Concept and experimental study for a new enhanced mineral trapping system by means of microbially mediated processes[J].Energy Procedia,2011,4:5079-5084.
    [14]West J M,McKinley I G,Palumbo-Roe B,et al.Potential impact of CO_2 storage on subsurface microbial ecosystems and implications for groundwater quality[J].Energy Procedia,2011,4:3163-3170.
    [15]Benzerara K,Miot J,Morin G,et al.Significance,mechanisms and environmental implications of microbial biomineralization[J].Comptes Rendus Geoscience,2011,343(2):160-167.
    [16]赵越,姚俊,王天齐,等.碳酸盐矿化菌的筛选与其吸附和矿化Cd~(2+)的特性[J].中国环境科学,2016,36(12):3800-3806.Zhao Y,Yao J,Wang T Q,et al.Screening of carbonatebiomineralization microbe and its cadmium removal characteristics based on adsorption and biomineralization[J].China Environmental Science[J].2016,36(12):3800-3806.
    [17]张旺园,张绍良,陈浮,等.模拟地下CO_2泄漏对土壤微生物群落的短期影响[J].农业环境科学学报2017,36(6):1167-1176.Zhang W Y,Zhang S L,Chen F,et al.Short-term Effects of Simulated Underground CO_2 Leakage on The Soil Microbial Community[J].Journal of Agro-Environment Science,2017,36(6):1167-1176.
    [18]王博强,李晨阳,卢伟,等.CO_2-咸水-砂岩相互作用过程中微生物群落结构动态变化特征[J].环境科学,2017,38(7):2978-2987.Wang B Q,Li C Y,Lu W,et al.Shift of microbial communities during the CO_2-brine-sandstone interaction process[J].Environmental Science,2017,38(7):2978-2987.
    [19]Gulliver D M,Lowry G V,Gregory K B.Comparative study of effects of CO_2 concentration and pH on microbial communities from a saline aquifer,a depleted oil reservoir,and a freshwater aquifer[J].Environmental Engineering Science,2016,33(10):806-816.
    [20]Mu A,Boreham C,Leong H X,et al.Changes in the deep subsurface microbial biosphere resulting from a field-scale CO_2 geosequestration experiment[J].Frontiers in Microbiology,2014,5:209-220.
    [21]Viollier E,Inglett P W,Hunter K,et al.The ferrozine method revisited:Fe(II)/Fe(III)determination in natural waters[J].Applied Geochemistry,2000,15(6):785-790.
    [22]Li C Y,Zhong S,Zhang F J,et al.Response of microbial communities to supercritical CO_2 and biogeochemical influences on microbially mediated CO_2-saline-sandstone interactions[J].Chemical Geology,2017,473:1-9.
    [23]Nicot J P,Solano S,Lu J,et al.Potential subsurface impacts of CO_2stream impurities on geologic carbon storage[J].Energy Procedia,2013,37:4552-4559.
    [24]Haouari O,Fardeau M L,Cayol J L,et al.Thermodesulfovibrio hydrogeniphilus sp.nov.,a new thermophilic sulphate-reducing bacterium isolated from a Tunisian hot spring[J].Systematic and Applied Microbiology,2008,31(1):38-42.
    [25]Haouari O,Fardeau M L,Cayol J L,et al.Thermodesulfovibrio hydrogeniphilus sp.nov.,a new thermophilic sulphate-reducing bacterium isolated from a Tunisian hot spring[J].Systematic and Applied Microbiology,2008,31(1):38-42.
    [26]Vipotnik Z,Jessen J E,Scully S M,et al.Effect of culture conditions on hydrogen production by Thermoanaerobacter strain AK68[J].International Journal of Hydrogen Energy,2016,41(1):181-189.
    [27]Strahsburger E,Zapata F,Pedroso I,et al.Draft genome sequence of Exiguobacterium aurantiacum strain PN47isolate from saline ponds,known as"Salar del Huasco",located in the Altiplano in the North of Chile[J].Braz J Microbiol,2017,49(1):7-9.
    [28]张莹,石萍,马炯.微小杆菌Exiguobacterium spp.及其环境应用研究进展[J].应用与环境生物学报,2013,19(5):898-904.Zhang Y,Shi P,Ma J.Exiguobacterium spp.and their applications in environmental remediation[J].Chinese Journal of Applied and Environmental Biology,2013,19(5):898-904.
    [29]Ramprakash B,Muthukumar K.Influence of sulfuric acid concentration on biohydrogen production from rice mill wastewater using pure and coculture of Enterobacter aerogenes and Citrobacter freundii[J].International Journal of Hydrogen Energy,2018,43(19):9254-9258.
    [30]Zuan Y,Cheng X H.A performance study of high-strength microbial mortar produced by low pressure grouting for the reinforcement of deteriorated masonry structures[J].Construction and Building Materials,2013,41:505-515.
    [31]Peix A,Ramírez-Bahena M H,Velázquez E.The current status on the taxonomy of Pseudomonas revisited:An update[J].Infection,Genetics and Evolution,2018,57:106-116.
    [32]田海龙.CO_2-咸水-岩相互作用对盖层封闭性影响研究[D].长春:吉林大学,2014.Tian H L.Impacts of CO_2-brine-rock interaction on caprock sealing efficiency:A case study of Shiqianfeng formation mudstone caprock in Ordos basin[D].Changchun:Jilin university,2014.
    [33]Sen S K,Jana A,Bandyopadhyay P,et al.Thermostable amylase production from hot spring isolate Exiguobacterium sp:A promising agent for natural detergents[J].Sustainable Chemistry and Pharmacy,2016,3:59-68.
    [34]Kulshreshtha N M,Kumar A,Dhall P,et al.Neutralization of alkaline industrial wastewaters using Exiguobacterium sp[J].International Biodeterioration&Biodegradation,2010,64(3):191-196.
    [35]赵佳佳.海洋沉积物中异化Fe(Ⅲ)还原特征及铁还原菌的分离鉴定[D].杨凌:西北农林科技大学,2010.Zhao J J.The Characteristics of microbial irom reduction and identification of iron deducers in marine sediments[D].Yangling:Northwest A&F University,2010.
    [36]Bhattacharya S,Bachani P,Jain D,et al.Extraction of potassium from K-feldspar through potassium solubilization in the halophilic Acinetobacter soli(MTCC 5918)isolated from the experimental salt farm[J].International Journal of Mineral Processing,2016,152:53-57.
    [37]Kantar C,Demiray H,Dogan N M,et al.Role of microbial exopolymeric substances(EPS)on chromium sorption and transport in heterogeneous subsurface soils:I.Cr(III)complexation with EPS in aqueous solution[J].Chemosphere,2011,82(10):1489-95.
    [38]Ahmed E,Holmstr?m S J M.Microbe-mineral interactions:The impact of surface attachment on mineral weathering and element selectivity by microorganisms[J].Chemical Geology,2015,403:13-23.
    [39]胡学伟,李姝,荣烨,等.不同EPS组成生物膜对Cu~(2+)吸附的研究[J].中国环境科学,2014,34(7):1749-1753.Hu X W,Li S,Rong Y,et al.The research on biofilm composed by different EPS to adsorb Cu~(2+)[J].China Environmental Science,2014,34(7):1749-1753.
    [40]Mueller B.Experimental interactions between clay minerals and bacteria:A review[J].Pedosphere,2015,25(6):799-810.
    [41]Biswas B,Chakraborty A,Sarkar B,et al.Structural changes in smectite due to interaction with a biosurfactant-producing bacterium Pseudoxanthomonas kaohsiungensis[J].Applied Clay Science,2017,136:51-57.
    [42]Tourney J,Ngwenya B T.The role of bacterial extracellular polymeric substances in geomicrobiology[J].Chemical Geology,2014,386:115-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700