玉米叶形相关性状的Meta-QTL及候选基因分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Meta-quantitative Trait Loci and Their Candidate Genes Related to Leaf Shape in Maize
  • 作者:郭书磊 ; 张君 ; 齐建双 ; 岳润清 ; 韩小花 ; 燕树锋 ; 卢彩霞 ; 傅晓雷 ; 陈娜娜 ; 库丽霞 ; 铁双贵
  • 英文作者:Shulei Guo;Jun Zhang;Jianshuang Qi;Runqing Yue;Xiaohua Han;Shufeng Yan;Caixia Lu;Xiaolei Fu;Nana Chen;Lixia Ku;Shuanggui Tie;Henan Provincial Key Lab of Maize Biology, Cereal Crops Institute, Henan Academy of Agricultural Sciences;Collaborative Innovation Center of Henan Grain Crops, College of Agronomy,Henan Agriculture University;
  • 关键词:玉米 ; 叶长 ; 叶宽 ; 叶面积 ; 叶夹角 ; 元分析 ; meta-QTL ; 候选基因
  • 英文关键词:maize(Zea mays);;leaf length;;leaf width;;leaf area;;leaf angle;;meta-analysis;;meta-QTL;;candidate gene
  • 中文刊名:ZWXT
  • 英文刊名:Chinese Bulletin of Botany
  • 机构:河南省农业科学院粮食作物研究所河南省玉米生物学重点实验室;河南农业大学农学院河南粮食作物协同创新中心;
  • 出版日期:2018-07-10
  • 出版单位:植物学报
  • 年:2018
  • 期:v.53
  • 基金:河南省现代农业产业技术体系专项(No.S2015-02-G02);; 河南省科技开放合作项目(No.172106000040);; 中国博士后科学基金(No.2017M612404);; 河南省博士后科研资助项目(No.1515)
  • 语种:中文;
  • 页:ZWXT201804009
  • 页数:15
  • CN:04
  • ISSN:11-5705/Q
  • 分类号:100-114
摘要
叶长、叶宽、叶面积及叶夹角不仅影响玉米(Zea mays)光合效率,也是株型的重要构成因素。通过对620个叶形QTL进行整合,构建不同遗传背景下的叶形QTL整合图谱,利用元分析发掘出22个叶长、22个叶宽、12个叶面积以及17个叶夹角m QTL;进一步运用生物信息学手段,确定44个与叶片发育密切相关的候选基因。分析发现,仅有NAL7-like、YABBY6-like和GRF2等13个基因位于m QTL区间内,而玉米中已克隆的KNOTTED1、AN3/GIF1、rgd1/lbl1、mwp1及SRL2-like、HYL1-like和CYCB2;4-like等水稻(Oryza sativa)和拟南芥(Arabidopsis thaliana)叶形同源基因位于未被整合的QTL内;对44个候选基因在叶片长、宽、厚发育过程中基部-末端、中央-边缘、远轴-近轴的调控机理进行归纳分析,发现玉米中仅有少数几个候选基因被报道,揭示了叶形发育的部分分子机理。因此,对玉米叶形相关m QTL/QTL及基因进行全面深入的分析,不仅有助于增加对其遗传结构的了解,发掘更多候选基因,阐明叶形发育和形成的分子机制,还可为耐密理想株型的分子标记辅助选择提供依据。
        Leaf length, width, area, and angle are important components of plant architecture but also affect the efficiency of photosynthesis in maize. In this study, 620 quantitative trait loci(QTL) were used to construct an integrated map related to maize leaf shape; 22 maize QTL(m QTL) for leaf length, 22 for leaf width, 12 for leaf area and 17 for leaf angle were estimated by meta-analysis. Further bioinformatics analysis identified 44 candidate genes closely related to leaf shape within the m QTL region, with some unintegrated QTL. However, only 13 candidate genes, including NAL7-like, YABBY6-like, and GRF2, were located in the m QTL region. Most of the candidate genes, such as the cloned genes KNOTTED1, AN3/GIF1, rgd1/lbl1 and mwp1 in maize and SRL2-like, HYL1-like, and CYCB2;4-like in rice and Arabidopsis thaliana homologous genes were projected onto the interval of unintegrated QTL. The regulation mechanism of 44 candidate genes is summarized and analyzed in the development of leaf length, width and thickness, by proximal-distal, central-marginal and adaxial-abaxial. Only a few known genes revealed part of the molecular mechanism of leaf development in maize. Further research of the m QTL/QTL and related genes will create a global view of the genetic architecture of maize leaf shape, provide useful biological information for fine mapping QTL, and identify more candidate genes to clarify the molecular mechanism of leaf morphogenesis and provide a theoretical base for ideal plant-architecture improvement of maize marker-assisted breeding.
引文
安允权,张君,席章营,李明娜,李沛,王顺喜,张莹莹,陈彦惠,吴连成(2016).玉米不同叶位叶面积的QTL定位.分子植物育种14,2113-2120.
    常立国,何坤辉,刘建超,薛吉全(2016).不同环境条件下玉米叶夹角的QTL定位.玉米科学24(4),49-55.
    郭莹(2012).利用不同F2群体定位玉米株型性状的QTL.硕士论文.重庆:西南大学.pp.45-47.
    鞠培娜,方云霞,邹国兴,彭友林,孙川,胡江,董国军,曾大力,郭龙彪,张光恒,高振宇,钱前(2010).一个新的水稻叶形突变体(tll1)的遗传分析与精细定位.植物学报45,654-661.
    李贤唐,丁俊强,王瑞霞,吴建宇(2011).玉米株型相关性状的QTL定位与分析.江苏农业科学39(2),21-25.
    刘建超,褚群,蔡红光,米国华,陈范骏(2010).玉米SSR连锁图谱构建及叶面积的QTL定位.遗传32,625-631.
    刘正,余婷婷,梅秀鹏,陈淅宁,王国强,王久光,刘朝显,王旭,蔡一林(2014).玉米穗上叶夹角和叶间距的QTL定位.农业生物技术学报22,177-187.
    路明,周芳,谢传晓,李明顺,徐云碧,Warburton M,张世煌(2007).玉米杂交种掖单13号的SSR连锁图谱构建与叶夹角和叶向值的QTL定位与分析.遗传29,1131-1138.
    唐登国(2013).玉米叶宽和叶长性状的QTL定位与分析.硕士论文.雅安:四川农业大学.pp.29-43.
    于永涛,张吉民,石云素,宋燕春,王天宇,黎裕(2006).利用不同群体对玉米株高和叶片夹角的QTL分析.玉米科学14(2),88-92.
    袁园园,王丽,赵盼盼,王林嵩(2016).棉花类结瘤素Mt N21基因家族生物信息学分析.植物学报51,515-524.
    张姿丽,蒋锋,刘鹏飞,陈青春,张媛,王晓明(2014a).甜玉米穗位叶面积QTL定位.湖北农业科学53,1502-1505.
    张姿丽,刘鹏飞,蒋锋,陈青春,张媛,王晓明,王汉宁(2014b).基于四交群体的玉米叶夹角和叶向值QTL定位分析.中国农业大学学报19(4),7-16.
    张志腾(2015).玉米叶型相关性状QTL定位与分析.硕士论文.雅安:四川农业大学.pp.21-23.
    郑祖平,黄玉碧,田孟良,谭振波(2007).不同供氮水平下玉米株型相关性状的QTLs定位和上位性效应分析.玉米科学15(2),14-18.
    Agrama HAS,Zakaria AG,Said FB,Tuinstra M(1999).Identification of quantitative trait loci for nitrogen use efficiency in maize.Mol Breed 5,187-195.
    Cai HG,Chu Q,Yuan LX,Liu JC,Chen XH,Chen FJ,Mi GH,Zhang FS(2012).Identification of quantitative trait loci for leaf area and chlorophyll content in maize(Zea mays)under low nitrogen and low phosphorus supply.Mol Breed 30,251-266.
    Candaele J,Demuynck K,Mosoti D,Beemster GTS,InzéD,Nelissen H(2014).Differential methylation during maize leaf growth targets developmentally regulated genes.Plant Physiol 164,1350-1364.
    Candela H,Johnston R,Gerhold A,Foster T,Hake S(2008).The Milkweed pod1 gene encodes a KANADIprotein that is required for abaxial/adaxial patterning in maize leaves.Plant Cell 20,2073-2087.
    Darvasi A,Soller M(1997).A simple method to calculate resolving power and confidence interval of QTL map location.Behav Genet 27,125-132.
    Debernardi JM,Mecchia MA,Vercruyssen L,Smaczniak C,Kaufmann K,Inze D,Rodriguez RE,Palatnik JF(2014).Post-transcriptional control of GRF transcription factors by micro RNA mi R396 and GIF co-activator affects leaf size and longevity.Plant J 79,413-426.
    Dewitte W,Scofield S,Alcasabas AA,Maughan SC,Menges M,Braun N,Collins C,Nieuwland J,Prinsen E,Sundaresan V,Murray JAH(2007).Arabidopsis CYCD3D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses.Proc Natl Acad Sci USA 104,14537-14542.
    Ding ZQ,Lin ZF,Li Q,Wu H,Xiang CY,Wang JF(2015).DNL1,encodes cellulose synthase-like D4,is a major QTLfor plant height and leaf width in rice(Oryza sativa L.).Biochem Biophys Res Commun 457,133-140.
    Dotto MC,Petsch KA,Aukerman MJ,Beatty M,Hammell M,Timmermans MC(2014).Genome-wide analysis of leaf bladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-si RNA pathway to maize development.PLo S Genet 10,e1004826.
    Eloy NB,de Freitas Lima M,Van Damme D,Vanhaeren H,Gonzalez N,de Milde L,Hemerly AS,Beemster GTS,InzéD,Ferreira PCG(2011).The APC/C subunit 10 plays an essential role in cell proliferation during leaf development.Plant J 68,351-363.
    Facette MR,Shen ZX,Bj?rnsdóttir FR,Briggs SP,Smith LG(2013).Parallel proteomic and phosphoproteomic analyses of successive stages of maize leaf development.Plant Cell 25,2798-2812.
    Fujino K,Matsuda Y,Ozawa K,Nishimura T,Koshiba T,Fraaije MW,Sekiguchi H(2008).NARROW LEAF 7 controls leaf shape mediated by auxin in rice.Mol Genet Genom 279,499-507.
    Goffinet B,Gerber S(2000).Quantitative trait loci:a metaanalysis.Genetics 155,463-473.
    Guo SL,Ku LX,Qi JS,Tian ZQ,Han T,Zhang LK,Su HH,Ren ZZ,Chen YH(2015).Genetic analysis and major quantitative trait locus mapping of leaf widths at different positions in multiple populations.PLo S One 10,e0119095.
    Horiguchi G,Ferjani A,Fujikura U,Tsukaya H(2006).Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana.J Plant Res 119,37-42.
    Hu J,Zhu L,Zeng DL,Gao ZY,Guo LB,Fang YX,Zhang GH,Dong GJ,Yan MX,Liu J,Qian Q(2010).Identification and characterization of NARROW AND ROLLEDLEAF 1,a novel gene regulating leaf morphology and plant architecture in rice.Plant Mol Biol 73,283-292.
    Hunter C,Willmann MR,Wu G,Yoshikawa M,de la Luz Gutiérrez-Nava M,Poethig SR(2006).Trans-acting si RNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis.Development 133,2973-2981.
    Iwakawa H,Iwasaki M,Kojima S,Ueno Y,Soma T,Tanaka H,Semiarti E,Machida Y,Machida C(2007).Expression of the ASYMMETRIC LEAVES 2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves.Plant J 51,173-184.
    Jun SE,Cho KH,Hwang JY,Abdel-Fattah W,Hammermeister A,Schaffrath R,Bowman JL,Kim GT(2015).Comparative analysis of the conserved functions of Arabidopsis DRL1 and yeast KTI12.Mol Cells 38,243-250.
    Kelley DR,Arreola A,Gallagher TL,Gasser CS(2012).ETTIN(ARF3)physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis.Development 139,1105-1109.
    Kim GT,Tsukaya H,Uchimiya H(1998).The ROTUNDI-FOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P450 family that is required for the regulated polar elongation of leaf cells.Genes Dev 12,2381-2391.
    Kim JH,Choi D,Kende H(2003).The At GRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis.Plant J 36,94-104.
    Ku LX,Zhang J,Guo SL,Liu HY,Zhao RF,Chen YH(2012a).Integrated multiple population analysis of leaf architecture traits in maize(Zea mays L.).J Exp Bot 63,261-274.
    Ku LX,Zhang J,Zhang JC,Guo SL,Liu HY,Zhao RF,Yan QX,Chen YH(2012b).Genetic dissection of leaf area by jointing two F2:3 populations in maize(Zea mays L.).Plant Breed 131,591-599.
    Ku LX,Zhao WM,Zhang J,Wu LC,Wang CL,Wang PA,Zhang WQ,Chen YH(2010).Quantitative trait loci mapping of leaf angle and leaf orientation value in maize(Zea mays L.).Theor Appl Genet 121,951-959.
    Kubo FC,Yasui Y,Kumamaru T,Sato Y,Hirano HY(2017).Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number.Genes Genet Syst 91,235-240.
    Lee YK,Kim GT,Kim IJ,Park J,Kwak SS,Choi G,Chung WI(2006).LONGIFOLIA1 and LONGIFOLIA2,two homologous genes,regulate longitudinal cell elongation in Arabidopsis.Development 133,4305-4314.
    Liang G,He H,Li Y,Wang F,Yu DQ(2014).Molecular mechanism of micro RNA396 mediating pistil development in Arabidopsis.Plant Physiol 164,249-258.
    Liu XF,Li M,Liu K,Tang D,Sun MF,Li YF,Shen Y,Du GJ,Cheng ZK(2016).Semi-Rolled Leaf 2 modulates rice leaf rolling by regulating abaxial side cell differentiation.J Exp Bot 67,2139-2150.
    Liu ZY,Jia LG,Wang H,He YK(2011).HYL1 regulates the balance between adaxial and abaxial identity for leaf flattening via mi RNA-mediated pathways.J Exp Bot 62,4367-6381.
    Luan WJ,Liu YQ,Zhang FX,Song YL,Wang ZY,Peng YK,Sun ZX(2011).Os CD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth.Plant Biotechnol J 9,513-524.
    Mallory AC,Reinhart BJ,Jones-Rhoades MW,Tang GL,Zamore PD,Barton MK,Bartel DP(2004).Micro RNAcontrol of PHABULOSA in leaf development:importance of pairing to the micro RNA 5′region.EMBO J 23,3356-3364.
    Matsumoto N,Okada K(2001).A homeobox gene,PRES-SED FLOWER,regulates lateral axis-dependent development of Arabidopsis flowers.Genes Dev 15,3355-3364.
    Matsuoka M,Ichikawa H,Saito A,Tada Y,Fujimura T,Kano-Murakami Y(1993).Expression of a rice homeobox gene causes altered morphology of transgenic plants.Plant Cell 5,1039-1048.
    Menges M,de Jager SM,Gruissem W,Murray JAH(2005).Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes,reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control.Plant J 41,546-566.
    Mickelson SM,Stuber CS,Senior L,Kaeppler SM(2002).Quantitative trait loci controlling leaf and tassel traits in a B73×Mo17 population of maize.Crop Sci 42,1902-1909.
    Mizukami Y,Fischer RL(2000).Plant organ size control:AINTEGUMENTA regulates growth and cell numbers during organogenesis.Proc Natl Acad Sci USA 97,942-947.
    Mlotshwa S,Yang ZY,Kim YJ,Chen XM(2006).Floral patterning defects induced by Arabidopsis APETALA2 and micro RNA172 expression in Nicotiana benthamiana.Plant Mol Biol 61,781-793.
    Nagasaki H,Sakamoto T,Sato Y,Matsuoka M(2001).Functional analysis of the conserved domains of a rice KNOX homeodomain protein,OSH15.Plant Cell 13,2085-2098.
    Nakata M,Matsumoto N,Tsugeki R,Rikirsch E,Laux T,Okada K(2012).Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis.Plant Cell 24,519-535.
    Nardmann J,Ji JB,Werr W,Scanlon MJ(2004).The maize duplicate genes narrow sheath 1 and narrow sheath 2encode a conserved homeobox gene function in a lateral domain of shoot apical meristems.Development 131,2827-2839.
    Nelissen H,Eeckhout D,Demuynck K,Persiau G,Walton A,Van Bel M,Vervoort M,Candaele J,de Block J,Aesaert S,Van Lijsebettens M,Goormachtig S,Vandepoele K,Van Leene J,Muszynski M,Gevaert K,InzéD,De Jaeger G(2015).Dynamic changes in ANGUSTIFO-LIA3 complex composition reveal a growth regulatory mechanism in the maize leaf.Plant Cell 27,1605-1619.
    Pekker I,Alvarez JP,Eshed Y(2005).Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity.Plant Cell 17,2899-2910.
    Qi J,Qian Q,Bu QY,Li SY,Chen Q,Sun JQ,Liang WX,Zhou YH,Chu CC,Li XG,Ren FG,Palme K,Zhao BR,Chen JF,Chen MS,Li CY(2008).Mutation of the rice Narrow leaf1 gene,which encodes a novel protein,affects vein patterning and polar auxin transport.Plant Physiol 147,1947-1959.
    Ramirez J,Bolduc N,Lisch D,Hake S(2009).Distal expression of knotted1 in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection.Plant Physiol 151,1878-1888.
    Reymond M,Muller B,Tardieu F(2004).Dealing with the genotype×environment interaction via a modelling approach:a comparison of QTLs of maize leaf length or width with QTLs of model parameters.J Exp Bot 55,2461-2472.
    Roodbarkelari F,Du F,Truernit E,Laux T(2015).ZLL/AGO10 maintains shoot meristem stem cells during Arabidopsis embryogenesis by down-regulating ARF2-mediated auxin response.BMC Biol 13,74.
    Scanlon MJ,Chen KD,Mc Knight CC(2000).The narrow sheath duplicate genes:sectors of dual aneuploidy reveal ancestrally conserved gene functions during maize leaf development.Genetics 155,1379-1389.
    Schatlowski N,Stahl Y,Hohenstatt ML,Goodrich J,Schubert D(2010).The CURLY LEAF interacting protein BLISTER controls expression of polycomb-group target genes and cellular differentiation of Arabidopsis thaliana.Plant Cell 22,2291-2305.
    Sentoku N,Sato Y,Matsuoka M(2000).Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants.Dev Biol 220,358-364.
    Tian F,Bradbury PJ,Brown PJ,Hung H,Sun Q,Flint-Garcia S,Rocheford TR,Mc Mullen MD,Holland JB,Buckler ES(2011).Genome-wide association study of leaf architecture in the maize nested association mapping population.Nat Genet 43,159-162.
    Timmermans MC,Schultes NP,Jankovsky JP,Nelson T(1998).Leaf bladeless 1 is required for dorsoventrality of lateral organs in maize.Development 125,2813-2823.
    Toriba T,Harada K,Takamura A,Nakamura H,Ichikawa H,Suzaki T,Hirano HY(2007).Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of Os YABBY1.Mol Genet Genom 277,457-468.
    Vercruyssen L,Verkest A,Gonzalez N,Heyndrickx KS,Eeckhout D,Han SK,Jégu T,Archacki R,Van Leene J,Andriankaja M,De Bodt S,Abeel T,Coppens F,Dhondt S,De Milde L,Vermeersch M,Maleux K,Gevaert K,Jerzmanowski A,Benhamed M,Wagner D,Vandepoele K,De Jaeger G,InzéD(2014).ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development.Plant Cell 26,210-229.
    Wassom JJ(2013).Quantitative trait loci for leaf angle,leaf width,leaf length,and plant height in a maize(Zea mays L.)B73×Mo17 population.Maydica 58,318-321.
    Wei XM,Wang XB,Guo SL,Zhou JL,Shi Y,Wang HT,Dou DD,Song XH,Li GH,Ku LX,Chen YH(2016).Epistatic and QTL×environment interaction effects on leaf area-associated traits in maize.Plant Breed 135,671-676.
    Woo YM,Park HJ,Su’udi M,Yang JI,Park JJ,Back K,Park YM,An G(2007).Constitutively wilted 1,a member of the rice YUCCA gene family,is required for maintaining water homeostasis and an appropriate root to shoot ratio.Plant Mol Biol 65,125-136.
    Wu L,Zhang DF,Xue M,Qian JJ,He Y,Wang SC(2014).Overexpression of the maize GRF10,an endogenous truncated growth-regulating factor protein,leads to reduction in leaf size and plant height.J Integr Plant Biol 56,1053-1063.
    Würschum T,Gro?-Hardt R,Laux T(2006).APETALA2regulates the stem cell niche in the Arabidopsis shoot meristem.Plant Cell 18,295-307.
    Yoshikawa T,Eiguchi M,Hibara KI,Ito JI,Nagato Y(2013).Rice SLENDER LEAF 1 gene encodes cellulose synthase-like D4 and is specifically expressed in M-phase cells to regulate cell proliferation.J Exp Bot 64,2049-2061.
    Zhang DF,Li B,Jia GQ,Zhang TF,Dai JR,Li JS,Wang SC(2008).Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in Maize(Zea mays L.).Plant Sci 175,809-817.
    Zhang GH,Xu Q,Zhu XD,Qian Q,Xue HW(2009).SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development.Plant Cell 21,719-735.
    Zhu HL,Hu FQ,Wang RH,Zhou X,Sze SH,Liou LW,Barefoot A,Dickman M,Zhang XR(2011).Arabidopsis Argonaute10 specifically sequesters mi R166/165 to regulate shoot apical meristem development.Cell 145,242-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700