一种新型核级FeCrAl合金的离子辐照行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ion irradiation behavior of a new type of nuclear grade FeCrAl alloy
  • 作者:吴伟松 ; 张瑞谦 ; 冉广 ; 王辉 ; 雷鹏辉 ; 孙永铎 ; 王清 ; 黄金池 ; 周哲辉 ; 朱勇辉
  • 英文作者:WU Wei-song;ZHANG Rui-qian;RAN Guang;WANG Hui;LEI Peng-hui;SUN Yong-duo;WANG Qing;HUANG Jin-chi;ZHOU Zhe-hui;ZHU Yong-hui;College of Energy, Xiamen University;Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China;Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education),School of Materials Science and Engineering, Dalian University of Technology;
  • 关键词:FeCrAl合金 ; 离子辐照 ; 燃料包壳 ; 辐照硬化
  • 英文关键词:FeCrAl alloy;;ion irradiation;;fuel cladding;;irradiation hardening
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:厦门大学能源学院;中国核动力研究设计院反应堆燃料及材料重点实验室;大连理工大学材料科学与工程学院教育部三束材料改性重点实验室;
  • 出版日期:2019-06-25
  • 出版单位:材料热处理学报
  • 年:2019
  • 期:v.40;No.228
  • 基金:国家自然科学基金(U1867201,U1832112);; 厦门大学能源学院发展基金(2018NYFZ01)
  • 语种:中文;
  • 页:JSCL201906011
  • 页数:9
  • CN:06
  • ISSN:11-4545/TG
  • 分类号:94-102
摘要
采用400 keV的Fe~+离子在400℃下对一种新型核级Fe13Cr4Al合金进行了辐照,利用透射电镜(TEM)和纳米显微硬度仪分析及测试了其辐照前后的微观结构和硬度值。结果表明:Fe~+离子辐照在合金基体中形成了大量位错环而未形成明显尺寸的空位团。随辐照剂量的增加,位错环尺寸不断增大,位错环体密度先增加,后趋于饱和,数值稳定在3.1×10~(22 )/m~3。辐照未使合金基体非晶化,但导致Laves析出相发生非晶化转变。随辐照剂量的增加,析出相中Nb、Mo、Ta和Cr 4种元素的含量呈减少趋势,而Si的含量却逐渐增加。在60~100 nm深度范围发生明显辐照硬化现象,临界深度值h_c=100 nm。辐照硬化值与辐照剂量呈幂函数关系:ΔH_(Irr)=0.4288(d)~(0.2311);而与微观组织参量(ND)~(0.5)呈正相关:ΔH_(Irr)=55.36(ND)~(0.5)。
        A new type of nuclear grade Fe13 Cr4 Al alloy was irradiated by 400 keV Fe~+ ions at 400 ℃. Microstructure and microhardness of the alloy before and after irradiation were analyzed by transmission electron microscopy and nanoindentor, respectively. The results show that a large number of dislocation loops are formed in the alloy matrix after irradiation by 400 keV Fe~+ ions, and the vacancy cluster with clear size is not formed. With the increase of the irradiation dose, the size of the dislocation loop increases, while their density increases first and finally tends to a saturated value of 3.1×10~(22 )/m~3. The Fe~+ ions irradiation does not amorphize the alloy matrix, but results in an amorphization transition of the Laves phase. The content of Nb, Mo, Ta and Cr in the precipitated phase decrease with the increase of the irradiation dose, while the content of Si gradually increases. There is the obvious irradiation hardening in the depth range of 60-100 nm, and the critical depth value(h_c) is 100 nm. The irradiation-hardening value is in a power-function relationship with the irradiation dose:ΔH_(Irr )=0.4288(d)~(0.2311), and shows positive correlation with the microstructure parameter:ΔH_(Irr )=55.36(ND)~(0.5).
引文
[1] 周军,邱绍宇,杜沛南,等.耐事故燃料包壳用FeCrAl不锈钢的研究进展[J].材料导报,2017,31(S2):47-51.ZHOU Jun,QIU Shao-yu,DU Pei-nan,et al.Research process in the FeCrAl alloy for accident tolerant fuel cladding[J].Materials Review,2017,31 (S2):47-51.
    [2] 刘俊凯,张新虎,恽迪.事故容错燃料包壳候选材料的研究现状及展望[J].材料导报A,2018,32(11):1757-1778.LIU Jun-kai,ZHANG Xin-hu,YUN Di.A comlete review and a prospect on the candidate materials for accident-tolerant fuel claddings[J].Materials Review A,2018,32(11):1757-1778.
    [3] Yamamoto Y,Pint B A,Terrani K A,et al.Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J].Journal of Nuclear Materials,2015,467:703-716.
    [4] Sun Z Q,Edmondson P D,Yamamoto Y.Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys[J].Acta Materialia,2017,144:716-727.
    [5] Chen W Y,Li M M,Zhang X,et al.In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel[J].Journal of Nuclear Materials,2015,464:185-192.
    [6] Sun Z Q,Bei H B,Yamamoto Y.Microstructural control of FeCrAl alloys using Mo and Nb additions[J].Materials Characterization,2017,132:126-131.
    [7] 吕铮,刘春明.快中子反应堆核心结构材料的辐照损伤[J].材料与冶金学报,2011,10(3):203-208.Lü Zheng,LIU Chun-ming.Irradiation damage of structural materials for fast reactor application[J].Journal of Materials and Metallurgy,2011,10 (3):203-208.
    [8] 赵飞,乔建生,黄依娜,等.硅对低活化马氏体钢电子辐照行为的影响[J].原子能科技学报,2008,42 (1):15-21.ZHAO Fei,QIAO Jian-sheng,HUANG Yi-na,et al.Effect of silicon on electron irradiation behavior in China low activation martensitic steels[J].Atomic Energy Science and Technology,2008,42 (1):15-21.
    [9] Li S L,Wang Y L,Dai X Y,et al.Evaluation of hardening behaviors in ion-irradiated Fe-9Cr and Fe-20Cr alloys by nanoindentation technique[J].Journal of Nuclear Materials,2016,478:50-55.
    [10] Kasada R,Takayama Y,Yabuuchi K,et al.A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques[J].Fusion Engineering and Design,2011,86 (9/11):2658-2661.
    [11] Liu X B,Wang R S,Ren A,et al.Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation[J].Journal of Nuclear Materials,2014,444 (1/3):1-6.
    [12] Kareer A,Prasitthipayong A,Krumwiede D,et al.An analytical method to extract irradiation hardening from nanoindentation hardness-depth curves[J].Journal of Nuclear Materials,2018,498:274-281.
    [13] Kasada R,Konishi S,Yabuuchi K,et al.Depth-dependent nanoindentation hardness of reduced-activation ferritic steels after MeV Fe-ion irradiation[J].Fusion Engineering and Design,2014,89 (7/8):1637-1641.
    [14] Nix W D,Gao H J,Indentation size effects in crystalline materials:a law for strain gradient plasticity[J].Journal of the Mechanics and Physics Solids,1998,46 (3):411-425.
    [15] Hosemann P,Kiener D,Wang Y,et al.Issues to consider using nano indentation on shallow ion beam irradiated materials[J].Journal of Nuclear Materials,2012,425(1/3):136-139.
    [16] 胡本芙,木下博嗣,柴山环树,等.双束同时辐照对低活性Fe-Cr-Mn(W,V)合金相稳定性影响[J].核科学与工程,2004,24(3):258-263.HU Ben-fu,KINOSHITA H,SHIBAYAMA T,et al.Effect of dual-beam irradiation on the phase stability in low activation Fe-Cr-Mn alloys[J].Chinese Journal of Nuclear Science and Engineering,2004,24 (3):258-263.
    [17] Muroga T,Yoshida N,Kttajima K.EDS investigation of solute-precipitate interactions in ferritic steels under irradiation[J].Ultramicroscopy,1987,22:281-288.
    [18] 胡本芙,高桥平七郎,竹山太郎.铁—铬—锰奥氏体合金辐照诱起相界面合金元素偏析[J].北京钢铁学院学报,1987,9(3):36-43.HU Ben-fu,TAKAHASHI H,TAKEYAMA T.Radiation-induced segregation at precipitate-matrix interface in Fe-Cr-Mn austenitic alloy[J].Journal of Beijing University of Iron and Steel Technology,1987,9(3):36-43.
    [19] 邓平,彭群家,韩恩厚,等.国产核用不锈钢辐照损伤研究[J].金属学报,2017,53(12):1588-1602.DENG Ping,PENG Qun-jia,HAN En-hou,et al.Study of irradiation damage in domestically fabricated nuclear grade stainless steel[J].Acta Metallurgica Sinica,2017,53 (12):1588-1602.
    [20] 司乃潮,万浩,葛俊杰,等.CLAM钢辐照效应的研究[J].江苏科技大学学报,2017,31(4):405-412.SI Nai-chao,WAN Hao,GE Jun-jie,et al.Study of irradiation effects in CLAM steel[J].Journal of Jiangsu University of Science and Technology,2017,31 (4):405-412.
    [21] Edwards D J,Simonen E P,Bruemmer S M.Evolution of fine-scale defects in stainless steels neutron-irradiated at 275 ℃[J].Journal of Nuclear Materials,2003,317 (1):13-31.
    [22] Haley J C,Briggs S A,Edmondson P D,et al.Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys[J].Acta Materialia,2017,136:390-401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700