用户名: 密码: 验证码:
海带粉对饲喂高精料饲粮奶牛瘤胃发酵参数和菌群结构的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Kelp Powder on Rumen Fermentation Parameters and Microflora Structure of Dairy Cows Fed a High Concentrate Diet
  • 作者:孙福昱 ; 赵一广 ; 薛夫光 ; 华登科 ; 杜春梅 ; 蒋林树 ; 熊本海
  • 英文作者:SUN Fuyu;ZHAO Yiguang;XUE Fuguang;HUA Dengke;DU Chunmei;JIANG Linshu;XIONG Benhai;State Key Laboratory of Animal Nutrition,Beijing Institute of Animal Science and Veterinary Medicine,Chinese Academy of Agricultural Sciences;Beijing Key Laboratory of Dairy Nutrition,Beijing Agricultural College;
  • 关键词:奶牛 ; 海带粉 ; 瘤胃发酵 ; 菌群结构
  • 英文关键词:dairy cows;;kelp powder;;rumen fermentation;;microflora structure
  • 中文刊名:DWYX
  • 英文刊名:Chinese Journal of Animal Nutrition
  • 机构:中国农业科学院北京畜牧兽医研究所动物营养学国家重点实验室;北京农学院奶牛营养学北京市重点实验室;
  • 出版日期:2019-06-14 16:27
  • 出版单位:动物营养学报
  • 年:2019
  • 期:v.31
  • 基金:北京市奶牛创新团队(bjcystx-ny-1)
  • 语种:中文;
  • 页:DWYX201906045
  • 页数:12
  • CN:06
  • ISSN:11-5461/S
  • 分类号:399-410
摘要
本试验旨在探究海带粉作为饲料原料对饲喂高精料饲粮奶牛瘤胃发酵参数及菌群结构的影响。试验选用体重为(605±36) kg的健康泌乳中后期荷斯坦奶牛15头,随机分为3组,每组5头。采用随机试验设计,3组奶牛分别饲喂45%低精料饲粮、55%高精料饲粮和55%高精料+5%海带粉饲粮。试验期为35 d,于试验末对晨饲前奶牛经口腔采集瘤胃液,测定其pH,氨态氮、微生物蛋白、挥发性脂肪酸浓度和菌群结构。结果显示:1)相比55%高精料饲粮,在55%高精料饲粮中添加5%海带粉后,瘤胃中pH显著升高(P<0.05),氨态氮和微生物蛋白的浓度显著降低(P<0.05),总挥发性脂肪酸的浓度以及挥发性脂肪酸中丁酸、异丁酸和异戊酸的比例显著增加(P<0.05)。2)在55%高精料饲粮中添加5%海带粉降低了样本独有的操作分类单元(OUT)数量,但对瘤胃细菌α多样性的影响不显著(P>0.05)。在门水平上,与44%低精料饲粮相比,55%高精料饲粮显著增加了瘤胃中放线菌门的相对丰度(P<0.05),显著降低了瘤胃中SR1_Absconditabacteria的相对丰度(P <0. 05);而在55%高精料饲粮中添加5%海带粉后,瘤胃中拟杆菌门的相对丰度显著降低(P<0.05),瘤胃中厚壁菌门的相对丰度显著增加(P<0.05),同时进一步显著增加了瘤胃中放线菌门的相对丰度(P<0.05)。在属水平上,相对于45%低精料饲粮,55%高精料饲粮显著增加了瘤胃中瘤胃球菌属2(Ruminococcus_2)和毛螺菌科NK3A20类群(Lachnospiraceae_NK3A20_group)的相对丰度(P<0.05),显著降低了瘤胃中普雷沃氏菌属1(Prevotella_1)和普雷沃氏菌科UCG-003(Prevotellaceae_UCG-003)的相对丰度(P<0.05);在55%高精料饲粮中添加5%海带粉后,进一步显著降低了瘤胃中Prevotella_1的相对丰度(P<0.05),并显著增加了瘤胃中Ruminococcus_2的相对丰度(P <0.05)。综上可见,在55%高精料饲粮中添加5%的海带粉可以改善饲喂高精料饲粮奶牛的瘤胃发酵环境,调整瘤胃菌群结构,对瘤胃细菌多样性的影响较小。
        The purpose of this experiment was to investigate the effects of kelp powder as a feed ingredient on rumen fermentation parameters and microflora structure of dairy cows fed a high concentrate diet. Fifteen healthy lactating cows in the middle and late lactation with the body weight of( 605±36) kg were randomly divided into 3 groups with 5 cows per group. Using a randomized trial design,cows in the 3 groups were fed45% lowconcentrate diet,55% high concentrate diet and 55% high concentrate+5% kelp powder diet,respectively. The experiment period was 35 days. At the end of the test,the rumen liquid was collected from the cows before the morning feeding,and the pH,ammonia nitrogen,microbial protein,volatile fatty acid concentrations and microflora structure were determined. The results showed as follows: 1) compared with the55% high concentrate diet,the pH of rumen was significantly increased( P<0.05),the concentrations of ammonia nitrogen and microbial protein were significantly reduced( P<0.05),and the concentration of total volatile fatty acids and the percentages of butyric acid,isobutyric acid and isovaleric acid in volatile fatty acids were significantly increased after adding 5% kelp powder into the 55% high concentrate diet( P<0.05). 2) Adding5% kelp powder into the 55% high concentrate diet reduced the unique operational taxonomic unit( OUT)number of samples,but had no significant effect on the rumen bacterial α diversity( P>0.05). At the phylum level,the 55% high concentrate diet significantly increased the relative abundance of Actinobacteria in rumen( P<0.05),and significantly reduced the relative abundance of SR1_Absconditabacteria in rumen compared with the 45% lowconcentrate diet( P<0.05); after adding 5% kelp powder into the 55% high concentrate diet,the relative abundance of Bacteroides in rumen was significantly decreased( P < 0. 05),the relative abundance of Firmicutes in rumen was significantly increased( P<0.05),and the relative abundance of Actinomycetes in rumen was further increased( P<0.05). At the genus level,the 55% high concentrate diet significantly increased the relative abundances of Ruminococcus _ 2 and Lachnospiraceae _ NK3 A20 _ group in rumen( P <0.05),and significantly reduced the relative abundances of Prevotella_1 and Prevotellaceae_UCG-003 in rumen compared with the 45% lowconcentrate diet( P<0.05); adding 5% kelp powder into the 55% high concentrate diet further significantly reduced the relative abundance of Prevotella_1 and significantly increased the relative abundance of Ruminococcus _2 in rumen( P < 0. 05). In summary,adding 5% kelp powder into the55% high concentration diet can improve the rumen fermentation environment of dairy cows,and adjust the structure of rumen microflora,which has little effect on rumen bacterial diversity.[Chinese Journal of Animal Nutrition,2019,31( 6) : 2842-2853]
引文
[1]CAMMACK K M,AUSTIN K J,LAMBERSON WR,et al.RUM INNAT NUTRITION SYM POSIUM:tiny but mighty:the role of the rumen microbes in livestock production[J].Journal of Animal Science,2018,96(2):752-770.
    [2]HUWS S A,CREEVEY C J,OYAMA L B,et al.Addressing global ruminant agricultural challenges through understanding the rumen microbiome:past,present,and future[J].Frontiers in M icrobiology,2018(9):02161.
    [3]焦万洪,李莉.牛瘤胃内主要细菌结构与功能探查[J].中国畜禽种业,2016,12(2):84.
    [4]孙燕勇,徐明,高民,等.亚急性瘤胃酸中毒对反刍动物瘤胃上皮及内环境影响的研究进展[J].动物营养学报,2018,30(4):1253-1261.
    [5]喻自清.海藻产业发展大有前途[J].农业知识,2016(36):20-21.
    [6]BALDRICK F R,SUNG C,MCFADDEN K,et al.The effect of seaw eed derived polyphenols on inflammation and oxidative stress in vivo-the SWAFAXstudy[J].Proceedings of the Nutrition Society,2014,73(OCE2):18-20.
    [7]OVERTON T R,YASUI T.Practical applications of trace minerals for dairy cattle[J].Journal of Animal Science,2014,92(2):416-426.
    [8]HUHEIHEL M,ISHANU V,TAL J,et al.Activity of Porphyridium sp.polysaccharide against herpes simplex viruses in vitro and in vivo[J].Journal of Biochemical and Biophysical M ethods,2002,50(2/3):189-200.
    [9]梁冰,于学成,吴力克,等.螺旋藻在体外对双歧杆菌及乳杆菌增殖的促进作用[J].中国微生态学杂志,1999,11(4):208-210.
    [10]周旭,闵力,赵圣国,等.高通量测序技术在瘤胃产甲烷菌群研究中的应用[J].家畜生态学报,2018,39(5):1-5,86.
    [11]NRC.Nutrient requirements of dairy cattle[S].7th ed.Washington,D.C.:National Academy Press,2001.
    [12]HORWITZ W.Official methods of analysis of AOACInternational[M].16th ed.Gaithersburg,M d.:AOACInternational,1995.
    [13]VAN SOEST P J,ROBERTSON J B,LEWIS B A.M ethods for dietary fiber,neutral detergent fiber,and nonstarch polysaccharides in relation to animal nutrition[J].Journal of Dairy Science,1991,74(10):3583-3597.
    [14]雷帮星,高海波,税小波,等.人工发酵古尼虫草中甘露醇的测定[J].菌物研究,2004,2(1):40-44.
    [15]蒋新国,奚念朱.海藻酸钠的含量及分子量测定[J].上海医科大学学报,1990,17(1):61-64.
    [16]BRODERICK G A,KANG J H.Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media[J].Journal of Dairy Science,1980,63(1):64-75.
    [17]BRODERICK G,MICHAEL CRAIG W.Metabolism of peptides and amino acids during in vitro protein degradation by mixed rumen organisms[J].Journal of Dairy Science,1989,72(10):2540-2548.
    [18]DENNIS K L,WANG Y W,BLATNER N R,et al.Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells[J].Cancer Research,2013,73(19):5905-5913.
    [19]DOHME F,DEVRIES T J,BEAUCHEMIN K A.Repeated ruminal acidosis challenges in lactating dairy cow s at high and low risk for developing acidosis:ruminal pH[J].Journal of Dairy Science,2008,91(9):3554-3567.
    [20]高敬尧,王宏燕,许毛毛,等.生物炭施入对农田土壤及作物生长影响的研究进展[J].江苏农业科学,2016,44(10):10-15.
    [21]王梦芝,喻礼怀,王洪荣,等.不同分子形式氮源对瘤胃微生物发酵及蛋白合成的影响[J].中国畜牧杂志,2010,46(5):20-24.
    [22]DEVANT M,FERRET A,GASA J,et al.Effects of protein concentration and degradability on performance,ruminal fermentation,and nitrogen metabolism in rapidly grow ing heifers fed high-concentrate diets from 100 to 230 kg body w eight[J].Journal of Animal Science,2000,78(6):1667-1676.
    [23]MCDONALD P,EDWARDS R A.The influence of conservation methods on digestion and utilization of forages by ruminants[J].Proceedings of the Nutrition Society,1976,35(2):201-211.
    [24]WHITELAW F G,MILNE J S,CHEN X B.The effect of a rumen microbial fermentation on urea and nitrogen metabolism of sheep nourished by intragastric infusion[J].Experimental Physiology,1991,76(1):91-101.
    [25]OWENS F N,ZINN R A,KIM Y K.Limits to starch digestion in the ruminant small intestine[J].Journal of Animal Science,1986,63(5):1634-1648.
    [26]EINARSON M S,PLAIZIER J C,WITTENBERG KM.Effects of barley silage chop length on productivity and rumen conditions of lactating dairy cow s fed a total mixed ration[J].Journal of Dairy Science,2004,87(9):2987-2996.
    [27]卢伟丽.卡拉胶和褐藻胶流变学特性及凝胶特性的研究[D].硕士学位论文.青岛:中国海洋大学,2008.
    [28]SCHIENER P,BLACK K D,STANLEY M S,et al.The seasonal variation in the chemical composition of the kelp species Laminaria digitata,Laminaria hyperborea,Saccharina latissima and Alaria esculenta[J].Journal of Applied Phycology,2015,27(1):363-373.
    [29]MCHUGH D J.A guide to the seaweed industry[R].FAO Fisheries Technical Paper 441.Rome:FAO,2003.
    [30]史建鑫,陈钢,李栋林,等.超声辅助提取昆布多酚及其抑菌活性的研究[J].食品研究与开发,2017,38(8):50-55.
    [31]KAMRA D N.Rumen microbial ecosystem[J].Current Science,2005,89(1):124-135.
    [32]MACHADO L,MAGNUSSON M,PAUL N A,et al.Effects of marine and freshw ater macroalgae on in vitro total gas and methane production[J].PLoS One,2014,9(1):e85289.
    [33]YANG C,ROOKE J A,CABEZA I,et al.Nitrate and Inhibition of ruminal methanogenesis:microbial ecology,obstacles,and opportunities for low ering methane emissions from ruminant livestock[J].Frontiers in M icrobiology,2016,7:132.
    [34]DURIC M,ZHAO G Y,ORSKOV E R,et al.Indirect measurement of saliva secretion in sheep fed diets of different structures and the effect of such diets on ruminal fluid kinetics and fermentation pattern[J].Experimental Physiology,1994,79(5):823-830.
    [35]ZEBELI Q,TAFAJ M,WEBER I,et al.Effects of dietary forage particle size and concentrate level on fermentation profile,in vitro degradation characteristics and concentration of liquid-or solid-associated bacterial mass in the rumen of dairy cow s[J].Animal Feed Science and Technology,2008,140(3/4):307-325.
    [36]PITT R E,CROSS T L,PELL A N,et al.Use of in vitro gas production models in ruminal kinetics[J].M athematical Biosciences,1999,159(2):145-163.
    [37]PETRI R M,SCHWAIGER T,PENNER G B,et al.Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis[J].Applied and Environmental M icrobiology,2013,79(12):3744-3755.
    [38]孙云章,毛胜勇,姚文,等.不同精粗比底物下瘤胃真菌和纤维降解细菌共培养发酵特性及菌群变化[J].微生物学报,2006,46(3):422-426.
    [39]MAO S Y,ZHANG R Y,WANG D S,et al.Impact of subacute ruminal acidosis(SARA)adaptation on rumen microbiota in dairy cattle using pyrosequencing[J].Anaerobe,2013,24:12-19.
    [40]WETZELS S U,MANN E,METZLER-ZEBELI B U,et al.Pyrosequencing reveals shifts in the bacterial epimural community relative to dietary concentrate amount in goats[J].Journal of Dairy Science,2015,98(8):5572-5587.
    [41]崔艳秋,罗鼎真,王晓民.褐藻多糖硫酸酯的抗炎与抗氧化活性研究进展[J].药学学报,2008,43(12):1186-1189.
    [42]KANG H K,SALIM H M,AKTER N,et al.Effect of various forms of dietary Chlorella supplementation on grow th performance,immune characteristics,and intestinal microflora population of broiler chickens[J].The Journal of Applied Poultry Research,2013,22(1):100-108.
    [43]吕钟钟,张文竹,李海花,等.海藻复合膳食纤维改善小鼠胃肠道功能的实验研究[J].中国海洋药物,2009(6):31-35.
    [44]LEONARD S G,SWEENEY T,BAHAR B,et al.Effects of dietary seaw eed extract supplementation in sow s and post-w eaned pigs on performance,intestinal morphology,intestinal microflora and immune status[J].British Journal of Nutrition,2011,106(5):688-699.
    [45]冯仰廉.反刍动物营养学[M].北京:科学出版社,2004.
    [46]MATSUI H,OGATA K,TAJIMA K,et al.Phenotypic characterization of polysaccharidases produced by four Prevotella type strains[J].Current M icrobiology,2000,41(1):45-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700