不同工况下汽油蒸气爆炸着火延迟与机理分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ignition delay measurements and analysis of kinetic mechanisms for gasoline-air explosion under different conditions
  • 作者:徐建楠 ; 蒋新生 ; 张昌华 ; 王易君 ; 张德翔 ; 谢威
  • 英文作者:XU Jiannan;JIANG Xinsheng;ZHANG Changhua;WANG Yijun;ZHANG Dexiang;XIE Wei;Department of Oil, Army Logistical University;Institute of Atomic and Molecular Physics,Sichuan University;
  • 关键词:激波管 ; 汽油 ; 着火延迟时间 ; 不同工况 ; 机理分析
  • 英文关键词:shock tube;;gasoline;;ignition delay time;;different conditions;;kinetic analysis
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:陆军勤务学院油料系;四川大学原子与分子物理研究所;
  • 出版日期:2018-12-04 17:27
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家重点研发计划项目(2017YFC0804705);; 国家自然科学基金项目(51574254);; 重庆市科技计划项目(CSTC 2014yykfB90001)
  • 语种:中文;
  • 页:HGSZ201901045
  • 页数:10
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:408-417
摘要
利用激波管,对常压下温度1200~1600 K、体积分数1.0%~2.4%范围内的92号汽油-空气混合气的着火延迟特性进行了实验研究,以探索低压初始环境中油气爆炸的着火延迟规律。分析了着火延迟时间随点火温度和油气浓度的变化规律;得到了不同浓度下汽油着火延迟时间的计算公式;根据实验结果对比分析了七种机理模型的优劣;结合机理中主要组分的产生、消耗速率变化,剖析了浓度影响着火延迟的原因。结果表明,汽油着火延迟时间与点火温度的倒数呈良好的指数关系;同一高温下,浓度越大,油气着火延迟时间越长,原因是高油气浓度下烃分子与H的反应更强,从而抑制H与O_2的反应;在验证的七种机理中,Abhijeet Raj机理在低压下对各油气浓度的着火延迟时间计算精度较高,适宜应用到油气爆炸模拟中。研究为汽油燃烧动力学机理的验证、优化与应用提供了较为准确的数据基础。
        Ignition characteristics for RON92 gasoline/air were measured in a shock tube at temperatures ranging from 1200 to 1600 K at atmospheric pressure for the first time. Combustion of the mixture with different oil gas concentrations(CH% =1.0%, 1.4%, 1.65%, 2.0%, 2.4%, by volume) was investigated. The experiments wereconducted to explore the ignition law of oil gas explosion. Based on experimental data, the variation of ignition delaytime with temperature and concentration were analysed. The formula of ignition delay time with temperature undereach concentration was fitted. In addition, seven reaction mechanism models were adopted to calculate ignitiondelay time and comparison was made with experimental results. According to the rate of production(ROP) of somemain species simulated by the best model, the influence of concentration on ignition delay was researched. Thepresent study shows that the ignition delay time of gasoline is in good exponential relation with the reciprocal ofignition temperature. And larger concentration leads to longer delay time at the same temperature, because larger oilgas concentration tends to promote the reaction between hydrocarbon molecules and H, which inhibits the reaction between H and O_2 as a result. Among the seven validated mechanisms, Abhijeet Raj mechanism exhibits highaccuracy in predicting gasoline ignition delay time over a wide range of concentration at low pressure, making itsuitable for oil gas explosion simulation. This work should provide experimental data set for validation and refinement of gasoline combustion mechanism and contribute to a method for identifying application conditions ofreaction mechanism.
引文
[1] Slavinskaya N A, Haidn O J. Modeling of n-heptane and isooctane oxidation in air[J]. Journal of Propulsion&Power, 2003, 19(6):1200-1216.
    [2] Li S J, Campos A, Davidson D F, et al. Shock tube measurements of branched alkane ignition delay times[J]. Fuel, 2014, 118(1):398-405.
    [3] Davidson D F, Oehlschlaeger M A, Herbon J T, et al. Shock tube measurements of iso-octane ignition times and OH concentration time histories[J]. Proceedings of the Combustion Institute, 2002,29(1):1295-1301.
    [4] Bounaceur R, Costa I D, Foumet R, et al. Experimental and modeling study of the oxidation of toluene[J]. International Journal of Chemical Kinetics, 2005, 37(1):25-49.
    [5] Sivaramakrishnan R, Tranter R S, Brezinsky K. High pressure pyrolysis of toluene(1):experiments and modeling of toluene decomposition[J]. Journal of Physical Chemistry A, 2006, 110(30):9388-9399.
    [6]谢伟,李萍,张昌华,等.利用OH自由基特征发射谱测量正庚烷的点火延迟时间[J].光谱学与光谱分析, 2011, 31(2):488-491.Xie W, Li P, Zhang C H, et al. Measurements of the ignition delay times of n-heptane by using characteristic emission from OH radical[J]. Spectroscopy and Spectral Analysis. 2011, 31(2):488-491.
    [7] Pitz W J, Naik C V, Mhaoldúin T N, et al. Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine[J]. Proceedings of the Combustion Institute, 2007, 31(1):267-275
    [8] Bugler J, Marks B, Mathieu O, et al. An ignition delay time and chemical kinetic modeling study of the pentane isomers[J].Combustion&Flame, 2016, 163(1):138-156.
    [9] Gao C W, Vandeputte A R G, Yee N W, et al. JP-10 combustion studied with shock tube experiments and modeled with automatic reaction mechanism generation[J]. Combustion and Flame, 2015,162(8):3115-3129.
    [10]王苏,范秉诚,何宇中,等.硅烷对JP10和煤油点火特性影响的激波管研究[J].力学学报, 2007, 39(4):460-465.Wang S, Fan B C, He Y Z, et al. Effect of silane on ignition characteristics of JP10 and kerosene as shown in shock tube study[J]. Journal of mechanics, 2007, 39(4):460-465.
    [11] Narayanaswamy K, Pitsch H, Pepiot P. A chemical mechanism for low to high temperature oxidation of methylcyclohexane as a component of transportation fuel surrogates[J]. Combustion and Flame, 2015, 162(4):1193-1213.
    [12] Seidel L, Kai M, Wang X, et al. Comprehensive kinetic modeling and experimental study of a fuel-rich, premixed n-heptane flame[J]. Combustion&Flame, 2015, 162(5):2045-2058.
    [13] Jia M, Xie M. A chemical kinetics model of iso-octane oxidation for HCCI engines[J]. Transactions of CSICE, 2006, 85(17):2593-2604.
    [14] Zhong B J, Zheng D. A chemical mechanism for ignition and oxidation of multi-component gasoline surrogate fuels[J]. Fuel,2014, 128(14):458-466.
    [15] Andrae J C G, Kovács T. Evaluation of adding an olefin to mixtures of primary reference fuels and toluene to model the oxidation of a fully blended gasoline[J]. Energy&Fuels, 2016, 30(9):7721-7730.
    [16] Zhen X, Yang W, Liu D. A new improvement on a chemical kinetic model of primary reference fuel for multi-dimensional CFD simulation[J]. Energy Conversion&Management, 2016, 109(2):113-121.
    [17] Andrae J C G. Comprehensive chemical kinetic modeling of toluene reference fuels oxidation[J]. Fuel, 2013, 107(9):740-748.
    [18] Andrae J C G. Development of a detailed kinetic model for gasoline surrogate fuels[J]. Fuel, 2008, 87(10/11):2013-2022.
    [19] Heghes C, Morgan N, Riedel U, et al. Development and validation of a gasoline surrogate fuel kinetic mechanism[C]//SAE World Congress, SAE Technical Papers, 2009.
    [20] Tanaka S, Ayala F, Keck J C, et al. Two-stage ignition in HCCI combustion and HCCI control by fuels and additives[J].Combustion&Flame, 2003, 132(1/2):219-239.
    [21] Andrae J, Johansson D, Bj?rnbom P, et al. Co-oxidation in the auto-ignition of primary reference fuels and n-heptane/toluene blends[J]. Combustion&Flame, 2007, 140(4):267-286.
    [22] Pitz W J, Ceraanasky N P, Dryer F L, et al. Development of an experimental database and kinetic models for surrogate jet fuels[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. SAE Technical Papers, 2007.
    [23] Gauthier B M, Davidson D F, Hanson R K. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures[J]. Combustion&Flame, 2004, 139(4):300-311.
    [24] Li H, Yu L, Lu X C, et al. Autoignition of ternary blends for gasoline surrogate at wide temperature ranges and at elevated pressure:shock tube measurements and detailed kinetic modeling[J]. Fuel, 2016, 181(10):916-925.
    [25] Fikri M, Herzler J, Starke R, et al. Autoignition of gasoline surrogates mixtures at intermediate temperatures and high pressures[J]. Combustion&Flame, 2008, 152(1/2):276-281.
    [26] Kukkadapu G, Kumar K, Sung C J, et al. Experimental and surrogate modeling study of gasoline ignition in a rapid compression machine[J]. Combustion&Flame, 2012, 159(10):3066-3078.
    [27] Kim Y, Min K, Kim M S, et al. Development of a reduced chemical kinetic mechanism and ignition delay measurement in a rapid compression machine for CAI combustion[C]//SAE World Congress&Exhibition. SAE Technical Paper, 2007.
    [28] Zhang P L, Du Y, Wu S L, et al. Flame regime estimations of gasoline explosion in a tube[J]. Journal of Loss Prevention in the Process Industries, 2015, 33(1):304-310.
    [29] Qi S, Du Y, Zhang P L, et al. Effects of concentration,temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion[J]. Journal of Hazardous Materials, 2016, 323(2):593-601.
    [30] Li G Q, Du Y, Qi S, et al. Explosions of gasoline-air mixtures in a closed pipe containing a T-shaped branch structure[J]. Journal of Loss Prevention in the Process Industries, 2016, 43(9):529-536.
    [31]李国庆,杜扬,齐圣,等.障碍物位置和油气浓度对油气泄压爆炸特性影响[J].化工学报, 2018, 69(5):2327-2336.Li G Q, Du Y, Qi S, et al. Effects of obstacle position and gas concentration on gasoline venting explosion[J]. CIESC Journal,2018, 69(5):2327-2336.
    [32]崔建方,李建华,郭超,等. 93号汽油组分的GC/MS研究[J].广州化工, 2013, 41(1):97-102.Cui J F, Li J H, Guo C, et al. GC/MS study on chemical components of gasoline 93#[J]. Guangzhou Chemical Industry,2013, 41(1):97-102.
    [33]李从善,李萍,张昌华,等.甲基环己烷燃烧反应特性的光谱研究[J].光谱学与光谱分析, 2011, 31(9):2521-2524.Li C S, Li P, Zhang C H, et al. Spectroscopic study on the combustion reaction characteristics of methylcyclohexane[J].Spectroscopy and Spectral Analysis, 2011, 31(9):2521-2524.
    [34]曾文,李海霞,马洪安,等. RP-3航空煤油模拟替代燃料的化学反应简化机理[J].推进技术, 2014, 35(8):1139-1145.Zeng W, Li H X, Ma H A, et al. Reduced chemical reaction mechanism of surrogate fuel for RP-3 kerosene[J]. Journal of Propulsion Technology, 2014, 35(8):1139-1145.
    [35] Cai L M, Pitsch H. Optimized chemical mechanism for combustion of gasoline surrogate fuels[J]. Combustion&Flame,2015, 162(5):1623-1637.
    [36] Raj A, Prada I D C, Amer A A, et al. A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons[J]. Combustion&Flame, 2012, 159(2):500-515.
    [37] Wang H, Yao M F, Yue Z Y, et al. A reduced toluene reference fuel chemical kinetic mechanism for combustion and polycyclicaromatic hydrocarbon predictions[J]. Combustion&Flame, 2015,162(6):2390-2404.
    [38] Mehl M, Chen J Y, Pitz W J, et al. An approach for formulating surrogates for gasoline with application toward a reduced surrogate mechanism for CFD engine modeling[J]. Energy&Fuels, 2011, 25(11):5215-5223.
    [39] Niemeyer K E, Sung C J. Mechanism reduction for multicomponent surrogates:a case study using toluene reference fuels[J]. Combustion&Flame, 2014, 161(11):2752-2764.
    [40] Liu Y D, Jia M, Xie M Z, et al. Development of a new skeletal chemical kinetic model of toluene reference fuel with application to gasoline surrogate fuels for computational fluid dynamics engine simulation[J]. Energy&Fuels, 2013, 27(8):4899-4909.
    [41]王怡峰.汽油燃料替代混合物低温燃烧机理数值模拟与试验研究[D].天津:天津大学, 2014.Wang Y F. Numerical and experimental investigation on gasoline surrogate low temperature combustion mechanism[D]. Tianjin:Tianjin Univeristy, 2014.
    [42] Jia G R, Wang H, Tong L H, et al. Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition(GCI)mode[J]. Applied Energy, 2017, 192(4):59-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700