基于物联网的烤房干/湿球温度集中监测系统设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of concentration monitoring system for dry-bulb and wet-bulb temperature in flue-curing barn based on internet of things
  • 作者:潘飞龙 ; 谭方利 ; 李峥 ; 吴文信 ; 刘小斌 ; 李宏光 ; 方明 ; 周观星 ; 王建安
  • 英文作者:PAN Feilong;TAN Fangli;LI Zheng;WU Wenxin;LIU Xiaobin;LI Hongguang;FANG Ming;ZHOU Guanxing;WANG Jian'an;College of Tobacco Science,Henan Agricultural University;Chenzhou Tobacco Company of Hunan Province;
  • 关键词:烤房 ; 干/湿球温度 ; 农业物联网 ; 局域网 ; 网关模块 ; 监测系统
  • 英文关键词:flue-curing barn;;dry-bulb and wet-bulb temperature;;agricultural internet of things;;LAN network;;gateway module;;monitoring system
  • 中文刊名:NNXB
  • 英文刊名:Journal of Henan Agricultural University
  • 机构:河南农业大学烟草学院;湖南省烟草公司郴州市公司;
  • 出版日期:2018-10-15
  • 出版单位:河南农业大学学报
  • 年:2018
  • 期:v.52;No.209
  • 基金:湖南省烟草公司郴州市公司资助项目(201543100094001)
  • 语种:中文;
  • 页:NNXB201805004
  • 页数:8
  • CN:05
  • ISSN:41-1112/S
  • 分类号:23-30
摘要
为实现烟叶烘烤过程中烤房干/湿球温度数据的实时在线收集。基于农业物联网技术设计了烤房干/湿球温度集中监测系统。该系统由传感器、数据传输与网络通信、监测平台构建3个技术层面构成。传感器用于各烤房干/湿球温度数据的实时在线采集;通过对目前常用短距离无线通信模块对比分析,结合烟叶烘烤环境特点最终选择Zig Bee技术构建各烤房数据传输无线网络,并利用串行通信端口和网关模块实现采集后数据至本地监测平台和云服务器的近、远程传输;监测平台具有用户管理、实时监测、数据处理和储存等功能。经试验,烘烤过程中系统获取干/湿球温度数据的均方根误差RMSE在0. 5以内,数据传输丢包率在0. 8%以下。表明系统数据采集传输性能良好,具有较高的精准度和稳定性,可满足各烤房干/湿球温度的集中监测。
        In order to realize the real-time online collection of the temperature data of the dry-bulb and wet-bulb of the flue-curing barn during the flue curing process,the concentration monitoring system for dry-bulb and wet-bulb temperature in flue-curing barn is designed based on the technology of Agricultural Internet of things( IOT). The system integrates the technical methods of sensing instruments,data transmission and network communication,and the construction of centralized monitoring platform. The sensors are used to capture the temperature data of the dry-bulb and wet-bulb in each flue-curing barn.By comparing and analyzing the commonly used short-range wireless communication modules,combined with the characteristics of tobacco baking environment,Zig Bee technology is finally selected to build data transmission wireless network for each barn. The serial interface and the gateway module are used to realize the near and remote transmission of data. The monitoring platform can be used for user management,real-time monitoring,data processing and storage. After the test,the root mean square error( RMSE) is less than 0. 5,and the packet loss rate is less than 0. 8%,indicating that the data acquisition and transmission performance of the system is good,with high accuracy and stability. The system can meet the concentration monitoring of the dry-bulb and wet-bulb temperature of various baking barns.
引文
[1]宋朝鹏,冀新威,孙建锋,等.几种烤烟专业化烘烤模式分析与探讨[J].中国烟草科学,2010,31(4):59-63.
    [2]杜克明,褚金翔,孙忠富,等. Web GIS在农业环境物联网监测系统中的设计与实现[J].农业工程学报,2016,32(4):171-178.
    [3]叶云,胡月明,赵小娟,等.规模化兔场生产监管系统的设计与实现[J].农业工程学报,2015,31(22):229-234.
    [4]史兵,赵德安,刘星桥,等.基于无线传感网络的规模化水产养殖智能监控系统[J].农业工程学报,2011,27(9):136-140.
    [5]阎晓军,王维瑞,梁建平.北京市设施农业物联网应用模式构建[J].农业工程学报,2012,28(4):149-154.
    [6]陈爽,王军,周贤娟.智能温室监控系统设计[J].工业控制计算机,2009,22(4):3-4.
    [7]赵虎,杨岚.一种基于GPRS技术的烤房温湿度远程监测系统:重庆,CN203083615U[P]. 2013-07-24.
    [8]蔡剑华,熊锐,黄国玉.基于无线传输的烤房温湿度远程监测系统[J].烟草科技,2016,49(10):81-86.
    [9] LLORET J,BOSCH I,SENDRA S,et al. A wireless sensor network for vineyard monitoring that uses image processing[J]. Sensors,2011,11(6):6165-6196.
    [10] KAMEOKA T,HASHIMOTO A. A sensing approach to fruit-growing[M]//Wireless sensor networks and ecological monitoring. Berlin:Springer Berlin Heidelberg,2013:217-246.
    [11] UCKELMANN D,HARRISON M,MICHAHELLES F.An architectural approach towards the future internet of things[M]. Heidelberg:Architecting the Internet of Things,2011:1-24.
    [12]李峥,谭方利,吴文信,等.烟叶烘烤新型能源和技术研究进展[J].天津农业科学,2017,23(11):68-72.
    [13] JIN L,GUO M,GAO L. Application and innovation strategy of agricultural internet of things[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,35(2):17-21.
    [14]李毅,余少辉,周步洲.基于DS18B20的测温系统设计[J].电子技术,2009,46(1):11-13.
    [15]张彦兵,刘永前,李义强. 1-Wire总线驱动电路设计[J].传感技术学报,2006,19(4):1020-1022.
    [16]余国雄,王卫星,谢家兴,等.基于物联网的荔枝园信息获取与智能灌溉专家决策系统[J].农业工程学报,2016,32(20):144-152.
    [17] BARKER P,BOUCOUVALAS A C,VITSAS V. Performance modelling of the Ir DA infrared wireless communications protocol[J]. International Journal of Communication Systems,2015,13(7/8):589-604.
    [18]邢庭炜. RS232串口通信在PC机与单片机通信中的应用[J].信息系统工程,2016(8):110-111.
    [19]李楠,刘成良,李彦明,等.基于3S技术联合的农田墒情远程监测系统开发[J].农业工程学报,2010,26(4):169-174.
    [20]贾鹏辉,陈辉,周平义.基于STM32F103VCT6的振弦式传感器数据采集系统[J].仪表技术与传感器,2015(2):67-70.
    [21]贺付亮,李新科,许愿,等.基于物联网的内河小型渔船动态信息监控系统设计[J].农业工程学报,2015,31(20):178-185.
    [22]商孔明.基于无线传感器网络和GPRS的温湿度远程监测系统[J].科学技术与工程,2012,12(24):6175-6178.
    [23]王鑫,潘贺,杨简.基于CC2530的Zig Bee无线温湿度监测系统设计[J].中国农机化学报,2014,35(3):217-220.
    [24]徐兴元,章玥,季民河,等.农业生态环境监测中无线传感节点信号有效传输距离的确定[J].农业工程学报,2013,29(14):164-170.
    [25]冯辉,常晓华,张红.基于Zig Bee的塔机群无线数据传输模拟实验分析[J].机电产品开发与创新,2011,24(4):122-124.
    [26]李燕君,王智,孙优贤.无线传感器网络的链路分析与建模[J].传感技术学报,2007,20(8):1846-1851.
    [27]邵鹏飞,曹江涛.双协议融合的WSNs温室环境监控系统设计[J].传感器与微系统,2016,35(6):78-81.
    [28]杨柳,毛志怀,蒋志杰,等.基于无线传输的粮仓温湿度远程监测系统[J].农业工程学报,2012,28(4):155-159.
    [29]梁瑞华.基于物联网技术的温室大棚智能管理系统构建[J].河南农业大学学报,2016,50(3):346-352.
    [30]滕志军,张明儒,张力,等.认知视角下能量感知的Zig Bee网络树型路由优化算法[J].哈尔滨工业大学学报,2016,48(11):109-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700