温度对微型鞭毛虫摄食细菌的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The effects of temperature on the bacterivory of nanoflagellates
  • 作者:陆家昌 ; 李杰 ; 赖俊翔
  • 英文作者:Lu Jiachang;Li Jie;Lai Junxiang;Guangxi Key Laboratory of Marine Environmental Science, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences;School of Marine Sciences, Guangxi University;
  • 关键词:微型鞭毛虫 ; 摄食率 ; 温度 ; 细菌
  • 英文关键词:nanoflagellates;;grazing rate;;temperature;;bacteria
  • 中文刊名:SEAC
  • 机构:广西科学院广西北部湾海洋研究中心广西近海海洋环境科学重点实验室;广西大学海洋学院;
  • 出版日期:2019-06-11
  • 出版单位:海洋学报
  • 年:2019
  • 期:v.41
  • 基金:广西科技重大专项(桂科AA17202020);; 广西自然科学基金青年基金项目(2016GXNSFBA380188);; 广西科学院基本科研业务费资助项目(2017YJJ23017)
  • 语种:中文;
  • 页:SEAC201906008
  • 页数:8
  • CN:06
  • ISSN:11-2055/P
  • 分类号:89-96
摘要
为研究温度对微型鞭毛虫(Nanoflagellates,NF)摄食细菌的影响,于广西近岸海区采集NF自然群落,置于实验室不同温度下(14℃、22℃、28℃)培养9天,观察细菌和NF的丰度变化。并以荧光细菌标记法研究不同温度下异养微型鞭毛虫(Hetertrophic Nanoflagellates, HNF)和含色素微型鞭毛虫(Pigmented Nanoflagellates, PNF)对细菌的摄食率,计算不同类型NF的群落摄食率。此外,研究还比较了不同粒径PNF(<3μm和3~10μm)对细菌的摄食。结果表明,不同类型的NF对细菌的摄食率由大到小为:3~10μm PNF、HNF、小于3μm PNF。较之PNF,HNF的摄食受温度影响较小。PNF的摄食率在22℃最大。而且,不同大小PNF的摄食对温度的响应有所不同。升温可以提高3~10μm PNF的摄食率,但会抑制小于3μm PNF的摄食。而降温抑制3~10μm PNF的摄食,但降温对小于3μm PNF摄食的抑制作用比升温小。但无论是3~10μm PNF还是小于3μm PNF,升温均会降低其丰度。而由于丰度减小对群落摄食率的影响更大,因此,升温降低PNF的群落摄食率。
        In order to investigate the temperature effects on the bacterivory of nanoflagellates(NF), natural NF community was collected from the coastal water in Guangxi, China. The NF was cultured under different temperatures(14℃, 22℃, and 28℃), during which the variations of the bacteria and NF abundance were observed. Fluorescently labeled bacteria were used to trace the grazing of bacteria by NF, and the community consumption rate of NF was calculated. Moreover, the ingestion rates of bacteria were compared between the PNF of different sizes(<3 μm and 3-10 μm). The results indicate that the ingestion rates arranged from high to low are 3-10 μm PNF, HNF, and <3 μm PNF. The ingestion rate of HNF is less affected by temperature than PNF, and the ingestion by PNF peaks at 22°C. Interestingly, the PNFs of the two sizes respond differently to temperature changes. The high temperature promotes the ingestion rate of 3-10 μm PNF but inhibits the ingestion rate of <3 μm PNF. The low temperature inhibits the ingestion rate of 3-10 μm PNF, but the inhibition of low temperature on the grazing of <3 μm PNF is less than high temperature. The abundances of both 3-10 μm PNF and <3 μm PNF are lowest in high temperature, and community consumption rate is mostly contributed by abundance. Therefore, for community consumption rate, the high temperature reduces the consumption of PNF on bacteria.
引文
[1] Billen G,Servais P,Becquevort S.Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments:bottom-up or top-down control?[J].Hydrobiologia,1990,207(1):37-42.
    [2] Pedrós-Alió C,Calderón-Paz J I,Gasol J M.Comparative analysis shows that bacterivory,not viral lysis,controls the abundance of heterotrophic prokaryotic plankton[J].FEMS Microbiology Ecology,2000,32(2):157-165.
    [3] Pace M L.Bacterial mortality and the fate of bacterial production[J].Hydrobiologia,1988,159(1):41-49.
    [4] Weinbauer M G,H?fle M G.Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake[J].Applied and Environmental Microbiology,1998,64(2):431-438.
    [5] Calbet A,Landry M R,Nunnery S.Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific[J].Aquatic Microbial Ecology,2001,23(3):283-292.
    [6] Unrein F,Gasol J M,Not F,et al.Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters[J].The ISME Journal,2014,8(1):164-176.
    [7] Tsai A Y,Gong G C,Sanders R W,et al.Importance of bacterivory by pigmented and heterotrophic nanoflagellates during the warm season in a subtropical western Pacific coastal ecosystem[J].Aquatic Microbial Ecology,2011,63:9-18.
    [8] Chan Y F,Tsai A Y,Chiang K P,et al.Pigmented nanoflagellates grazing on Synechococcus:seasonal variations and effect of flagellate size in the coastal ecosystem of subtropical Western Pacific[J].Microbial Ecology,2009,58(3):548-557.
    [9] Wilken S,Huisman J,Naus-Wiezer S,et al.Mixotrophic organisms become more heterotrophic with rising temperature[J].Ecology Letters,2013,16(2):225-233.
    [10] Vázquez-Domínguez E,Vaqué D,Gasol J M.Temperature effects on the heterotrophic bacteria,heterotrophic nanoflagellates,and microbial top predators of the NW Mediterranean[J].Aquatic Microbial Ecology,2012,67(2):107-121.
    [11] 黄凌风,汪文澜,林施泉,等.温度对一种海洋微型异养鞭毛虫生长影响的初步研究[J].寄生虫与医学昆虫学报,2010,17(1):10-15.Huang Lingfeng,Wang Wenlan,Lin Shiquan,et al.Effect of temperature on the growth of a marine heterotrophic nanoflagellate[J].Acta Parasitology et Medica Entomologica Sinica,2010,17(1):10-15.
    [12] Kamykowski D,Zentara S J.Predicting plant nutrient concentrations from temperature and sigma-t in the upper kilometer of the world ocean[J].Deep Sea Research Part A.Oceanographic Research Papers,1986,33(1):89-105.
    [13] Arenovski A L,Lim E L,Caron D A.Mixotrophic nanoplankton in oligotrophic surface waters of the Sargasso Sea may employ phagotrophy to obtain major nutrients[J].Journal of Plankton Research,1995,17(4):801-820.
    [14] Jones R I.Mixotrophy in planktonic protists:an overview[J].Freshwater Biology,2000,45(2):219-226.
    [15] Sherr B F,Sherr E B,Fallon R D.Use of monodispersed,fluorescently labeled bacteria to estimate in situ protozoan bacterivory[J].Applied and Environmental Microbiology,1987,53(5):958-965.
    [16] 陈默,高光,朱丽萍,等.太湖水体中微型原生动物对细菌的捕食作用[J].应用生态学报,2007,18(10):2384-2388.Chen Mo,Gao Guang,Zhu Liping,et al.Predation of micro-protozoa on bacteria in Taihu Lake[J].Chinese Journal of Applied Ecology,2007,18(10):2384-2388.
    [17] Menden-Deuer S,Lawrence C,Franzè G.Herbivorous protist growth and grazing rates at in situ and artificially elevated temperatures during an Arctic phytoplankton spring bloom[J].PeerJ,2018,6:e5264.
    [18] Marrasé C,Lim E L,Caron D A.Seasonal and daily changes in bacterivory in a coastal plankton community[J].Marine Ecology Progress,1992,82(3):281-289.
    [19] Shiah F K,Ducklow H W.Temperature and substrate regulation of bacterial abundance,production and specific growth rate in Chesapeake Bay,USA[J].Marine Ecology Progress,1994,104(3):297-308.
    [20] Choi D H,Park J S,Hwang C Y,et al.Effects of thermal effluents from a power station on bacteria and heterotrophic nanoflagellates in coastal waters[J].Marine Ecology Progress,2002,229:1-10.
    [21] Vaqué D,Gasol J M,Marrasé C.Grazing rates on bacteria:the significance of methodology and ecological factors[J].Marine Ecology Progress,1994,109:263-274.
    [22] Fenchel T.Ecology of heterotrophic microflagellates.Ⅱ.bioenergetics and growth[J].Marine Ecology,1982,8:225-231.
    [23] Heinze A W,Truesdale C L,DeVaul S B,et al.Role of temperature in growth,feeding,and vertical distribution of the mixotrophic chrysophyte Dinobryon[J].Aquatic Microbial Ecology,2013,71(2):155-163.
    [24] 潘科.海洋异养鞭毛虫摄食与生长的实验生态学研究[D].厦门:厦门大学,2006.Pan Ke.Experimental ecological study on feeding and growth of marine heterotrophic flagellates[D].Xiamen:Xiamen University,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700