转炉一次除尘新OG系统高效喷淋塔喷嘴布置方式对喷淋特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of nozzle layout in high efficient spray tower of new OG system of primary dedusting system for converter on spray characteristics
  • 作者:钱付平 ; 黄小萍 ; 曹博文 ; 夏勇军 ; 胡笳 ; 史德明 ; 韩云龙
  • 英文作者:Fuping QIAN;Xiaoping HUANG;Bowen CAO;Yongjun XIA;Jia HU;Deming SHI;Yunlong HAN;School of Civil Engineering and Architecture, Anhui University of Technology;Anhui Xinchuang Energy Saving & Environment Protection Science & Technology Co., Ltd.;
  • 关键词:转炉一次除尘 ; 新OG系统 ; 喷淋塔 ; 喷嘴布置 ; 数值模拟
  • 英文关键词:wet dust removal in converter;;new OG system;;spray tower;;nozzle layout;;numerical simulation
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:安徽工业大学建筑工程学院;安徽欣创节能环保科技股份有限公司;
  • 出版日期:2018-12-28 11:36
  • 出版单位:过程工程学报
  • 年:2019
  • 期:v.19
  • 基金:安徽省高校自然科学研究重大项目(编号:KJ2017ZD06)
  • 语种:中文;
  • 页:HGYJ201903008
  • 页数:10
  • CN:03
  • ISSN:11-4541/TQ
  • 分类号:61-70
摘要
采用离散相模型对新OG系统高效喷淋塔入口段及主体段喷嘴的布置方式进行数值模拟,考察了喷嘴喷射方向和喷淋层数对雾化场气流分布和降温效果的影响。结果表明,喷嘴的喷射方向和塔内的喷淋层数对雾化场的气流分布和降温效果影响较大;喷淋塔入口段采用逆流喷射时,出口截面的速度分布最均匀且降温效果最好;高效喷淋塔的主体段的喷淋层数为5时,塔内烟气的速度流场较均匀,且中心区域的气流速度为2~4 m/s,有助于延长气体与液滴的作用时间;随喷淋层数增加,塔内温度梯度变化增大,水蒸气质量分数分布与温度分布对应,塔内的平均湍动能逐渐增高。
        The nozzle layout of the high efficient spray tower in OG(Oxygen Converter Gas Recovery) system of the primary dedusting for the converter has an important role on the cooling effect and operating reliability of the spraying system. The discrete phase model was used to simulate the nozzle layout of the high efficiency spray tower. The nozzle layouts of the inlet and main section of the high efficiency spray tower were discussed, and the influence of the nozzle direction and the number of spraylayers on the air distribution and cooling effect in the atomizing field were also analyzed. The results showed that the spraying direction of the nozzle and the number of spray layers in the tower had great influence on the air distribution and cooling effect of the atomization field. When the inlet section of the spray tower adopted countercurrent injection, the velocity distribution of the outlet cross section was the most uniform and the cooling effect was the best. When the number of spray layers in the main section of the high efficiency spray tower was five, the flow field of the flue gas in the tower was relatively uniform, and the velocity in the center area was in the range of 2~4 m/s, which helped to increase the time of interaction between gas and droplets. With the increase of the number of spray layers, the temperature gradient in the tower also increased and the distributions of water vapor mass fraction and temperature correspond to each other, and then the average turbulent energy in the tower also gradually increased. Through the above research, the reasonable arrangement of nozzle in the high efficiency spray tower was obtained. The results can provide a theoretical basis for the optimization and improvement of the high efficiency spray tower in the new OG system.
引文
[1]马春生.转炉烟气净化与回收工艺[M].北京:冶金工业出版社,2014:113-117.Ma C S.Converter gas purification and recovery system[M].Beijing:Metallurgical Industry Press,2014:113-117.
    [2]闫武装,周景伟.国内转炉除尘技术介绍及趋势分析[J].冶金设备,2017,(增刊1):126-128.Yan W Z,Zhou J W.Trend analysis of converter dust removal technology in China[J].Metallurgical Equipment,2017,(S1):126-128.
    [3]Li S,Zheng M,Liu W,et al.Estimation and characterization of unintentionally produced persistent organic pollutant emission from converter steelmaking processes[J]Environmental Science and Pollution Research,2014,21(12):7361-7368.
    [4]吕平.转炉烟气治理技术现状及展望[J].冶金丛刊,2016,(5):28-31.LüP.Converter gas treatment technology present situation and prospects[J].Metallurgical Collections,2016,(5):28-31.
    [5]祝杰,吴振元,叶世超,等.喷淋塔液滴粒径分布及比表面积的实验研究[J].化工学报,2014,65(12):4709-4715.Zhu J,Wu Z Y,Ye S C,et al.Drop size distribution and specific surface area in spray tower[J].CIESC Journal,2014,65(12):4709-4715.
    [6]祝杰,吴振元,叶世超,等.喷淋塔传质特性的实验与模型研究[J].环境工程学报,2015,9(1):317-322.Zhu J,Wu Z Y,Ye S C,et al.Experimental study and modeling for mass-transfer characteristics in spray tower[J].Chinese Journal of Environmental Engineering,2015,9(1):317-322.
    [7]Liu D,Chen B,Zhang B.Numerical simulation of the two-phase fluid field in a gas-around-liquid spray nozzle[J].Chemical Engineering and Technology,2013,36(3):450-458.
    [8]李睿,苏伟,宋存义,等.烟气脱硫卧式喷淋塔的数值模拟[J].环境工程学报,2016,10(10):5798-5802.Li R,Su W,Song C Y,et al.Numerical simulation on wet flue gas horizontal spray tower[J].Chinese Journal of Environmental Engineering,2016,10(10):5798-5802.
    [9]田海军,邢奕,宋存义,等.卧式喷淋塔烟气脱硫的数值模拟[J].工程科学学报,2018,40(1):17-22.Tian H J,Xing Y,Song C Y,et al.Numerical simulation of flue gas desulfurization by horizontal spray tower[J].Chinese Journal of Engineering,2018,40(1):17-22.
    [10]林瑜,陈德珍,尹丽洁.喷淋层组合方式对大型脱硫塔内流动和热湿交换过程影响的数值模拟[J].中南大学学报,2017,48(10):2572-2582.Lin Y,Chen D Z,Yin L J.Numerical simulation of impact of spraying layers scheme on gas-liquid two phases flow,heat and mass transfer in large scale desulphurization absorption tower[J].Journal of Central South University,2017,48(10):2572-2582.
    [11]Tseng C C,Li C J.Numerical investigation of the inertial loss coefficient and the porous media model for the flow through the perforated sieve tray[J].Chemical Engineering Research&Design,2016,106:126-140.
    [12]Marocco L.Modeling of the fluid dynamics and SO2 absorption in a gas-liquid reactor[J].Chemical Engineering Journal,2010,162(1):217-226.
    [13]Marocco L,Mora A.CFD modeling of the dry-sorbent-injection process for flue gas desulfurization using hydrated lime[J].Separation and Purification Technology,2013,108(16):205-214.
    [14]Codolo M,Bizzo W,Bertazzoli R.Performance of a UV assisted hydrogen-peroxide-fed spray tower for sulfur dioxide abatement[J].Chemical Engineering and Technology,2013,36(7):1255-1260.
    [15]祝杰,吴振元,叶世超,等.石灰石-石膏湿法喷淋脱硫模型研究[J].高校化学工程学报,2015,29(1):220-225.Zhu J,Wu Z Y,Ye S C,et al.Modelling of wet limestone-gypsum flue gas desulfurization system in spray tower[J].Journal of Chemical Engineering of Chinese Universities,2015,29(1):220-225.
    [16]黄小萍,钱付平,王来勇,等.转炉一次除尘新OG系统高效喷淋塔喷嘴雾化特性的模拟[J].过程工程学报,2018,18(3):461-468.Huang X P,Qian F P,Wang L Y,et al.Simulation of atomization characteristics in high efficient spray tower nozzle of new OGsystem of primary dedusting system for converter[J].The Chinese Journal of Process Engineering,2018,18(3):461-468.
    [17]Ahsan M.Numerical analysis of friction factor for a fully developed turbulent flow using k-eturbulence model with enhanced wall treatment[J].Beni-suef University Journal of Basic and Applied Sciences,2014,3(4):269-277.
    [18]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004:206-207.Wang F J.Computational fluid dynamics analysis-principle and application of CFD software[M].Beijing:Tsinghua University Press,2004:206-207.
    [19]Qin C,Loth E.Numerical description of a pressure-swirl nozzle spray[J].Chemical Engineering&Processing:Process Intensification,2016,107:68-79.
    [20]陈曦,葛少成,张忠温,等.基于Fluent多喷嘴喷雾干涉数值模拟分析[J].环境工程学报,2014,8(6):2503-2508.Chen X,Ge S C,Zhang Z W,et al.Numerical simulation and analysis of multi-nozzle interference base on Fluent[J].Chinese Journal of Environment Engineering,2014,8(6):2503-2508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700