黑米原花青素的红外光谱分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of black rice procyanidins by fourier transform infrared spectroscopy(FTIR)
  • 作者:崔梦晗 ; 陈晓旭 ; 王宇琦 ; 韩雪 ; 谢凤英 ; 孙立娜
  • 英文作者:CUI Menghan;CHEN Xiaoxu;WANG Yuqi;HAN Xue;XIE Fengying;SUN Lina;College of Food, Northeast Agricultural University;Harbin Food Industry Research Institute;
  • 关键词:黑米 ; 原花青素 ; 原花青定 ; 红外光谱测定 ; 结构分析
  • 英文关键词:black rice;;procyanidins;;the former cyanine;;fourier transform infrared spectroscopy(FTIR);;structure analysis
  • 中文刊名:SSPJ
  • 英文刊名:Food Science and Technology
  • 机构:东北农业大学食品学院;哈尔滨市食品产业研究院;
  • 出版日期:2019-04-20
  • 出版单位:食品科技
  • 年:2019
  • 期:v.44;No.330
  • 基金:国家重点研发计划项目(2016YFD0400702);; 黑龙江省科学基金项目(C2018015);; 哈尔滨市科技创新人才研究专项资金项目(2017RAQXJ097);; 东北农业大学大学生创新创业训练项目(201810224291)
  • 语种:中文;
  • 页:SSPJ201904065
  • 页数:5
  • CN:04
  • ISSN:11-3511/TS
  • 分类号:319-322+330
摘要
原花青素是一种多酚类物质,目前被公认为清除人体中自由基效果最好的天然抗氧化剂。为充分利用这一资源,以黑米为研究对象进行原花青素提取与纯化,通过超微粉碎技术并结合有机溶剂丙酮的双水溶性,实现原花青素分子的释放,利用膜过滤与大孔树脂吸附相结合的方法进行原花青素物质的分离纯化,通过红外光谱技术中不同官能团和化学键的吸收峰强度的差异构成波数分布极为清晰的红外光图谱,再结合二阶导数图谱实现黑米原花青素结构解析。结果表明:黑米原花青素纯化前后均于3650~3200 cm~(-1)处有强吸收峰,发生羟基的伸缩振动,在1680~1450 cm~(-1)处有强吸收峰,苯环的骨架振动主要集中1596.60 cm~(-1)附近且只有一个吸收峰,同时,在指纹区域796.46 cm~(-1)处出现苯环上的不饱和C-H面外变形振动吸收峰。此外,黑米原花青素纯化后各峰值强度均变弱。由此可得,黑米原花青素是混合多聚原花青素类,其结构单元主要为原花青定。
        Procyanidins is a polyphenolic substance that has been recognized as the best natural antioxidant that can effectively remove free radicals from the human body. In order to make full use of the resources, the study extracted and purified the procyanidins from black rice as research target,changed the geometry of the material particles by the ultra-fine pulverization technology and combined the dual water-solubility of the organic solvent acetone to achieve the release of procyanidins molecules by disruption of hydrogen bonding force between procyanidin and black rice macromolecule proteins and cellulose molecules, separated and purified procyanidins by membrane filtration technology and macroporous resin. Then constituted a very clear infrared spectrogram of wavenumber distribution by differences in intensity of absorption peaks by different functional groups and chemical bonds in infrared spectroscopy, combined with the second derivative atlas to achieve black rice procyanidins structure analysis. The results showed that black rice procyanidins had strong absorption peaks around 3650~3200 cm~(-1) whatever before and after purification, because the hydroxyl stretching vibration occurred, and the absorption peak appears at 3650~3200 cm~(-1), the skeleton vibration of the benzene ring mainly concentrates around 1596.60 cm~(-1) and has only one absorption peak. At the same time, the absorption peak of the unsaturation C-H out-of-plane deformation on the benzene ring occurs at the 796.46 cm~(-1) fingerprint area. In addition, the peak intensities of the black rice procyanidins were all weak after purification. It can be concluded that black rice procyanidins are mixed poly-procyanidins and their structural units are proanthocyanidins fractions.
引文
[1]Shao Y,Hu Z,Yu Y,et al.Phenolic acids,anthocyanins,proanthocyanidins,antioxidant activity,minerals and their correlations in non﹣pigmented,red,and black rice[J].Food Chemistry,2018,239:733.
    [2]Paiva F F,Vanier N L,Berrios J D J,et al.Physico﹣chemical and nutritional properties of pigmented rice subjected to different degrees of milling[J].Journal of Food Composition&Analysis,2014,35(1):10﹣17.
    [3]Das A B,Goud V V,Das C.Extraction of phenolic compounds and anthocyanin from black and purple rice bran(Oryza sativa,L.)using ultrasound:A comparative analysis and phytochemical profiling[J].Industrial Crops&Products,2017,95:332﹣341.
    [4]Qi Y,Zhang H,Wu G,et al.Mitigation effects of proanthocyanidins with different structures on acrylamide formation in chemical and fried potato crisp models[J].Food Chemistry,2018,250:98﹣104.
    [5]Nakashima S,Oda C,Masuda S,et al.Isolation and structure elucidation of tetrameric procyanidins from unripe apples(Malus pumila cv.Fuji)by NMRspectroscopy[J].Phytochemistry,2012,83(11):144﹣152.
    [6]Zhang H,Yang Y,Ma C.Structures and antioxidant and intestinal disaccharidase inhibitory activities of A﹣type proanthocyanidins from peanut skin[J].Journal of Agricultural&Food Chemistry,2013,61(37):8814﹣8820.
    [7]Serra A T,Rocha J,Sepodes B,et al.Evaluation of cardiovascular protective effect of different apple varieties﹣Correlation of response with composition[J].Food Chemistry,2012,135(4):2378﹣2386.
    [8]Nishizuka T,Fujita Y,Sato Y,et al.Procyanidins are potent inhibitors of LOX﹣1:a new player in the French Paradox[J].Proceedings of the Japan Academy,2011,87(3):104.
    [9]Dias R,Perezgregorio M R,Mateus N,et al.Interaction study between wheat﹣derived peptides and procyanidin B3by mass spectrometry[J].Food Chemistry,2016,194(1):1304﹣1312.
    [10]Dhanani T,Singh R,Kumar S.Extraction optimization of gallic acid,(+)﹣catechin,procyanidin﹣B2,(﹣)﹣epicatechin,(﹣)﹣epigallocatechin gallate,and(﹣)﹣epicatechin gallate:their simultaneous identification and quantification in Saracaasoca[J].Journal of Food&Drug Analysis,2016,25(3):691.
    [11]Hellenbrand N,Sendker J,Lechtenberg M,et al.Iso﹣lation and quantification of oligomeric and polymeric procyanidins in leaves and flowers of Hawthorn(Crataegus spp.)[J].Fitoterapia,2015,104:14﹣22.
    [12]卢晓蕊,路金丽,武彦文,等.红外光谱法研究花色苷色素的酯化修饰[J].光谱学与光谱分析,2010,30(1):38﹣41.
    [13]石娟.黑米中花青素的提取、纯化及其体内抗氧化活性研究[D].合肥:合肥工业大学,2012.
    [14]杨志娟,曾真,吴晓萍.火龙果皮原花青素提取纯化及定性分析[J].食品科学,2015,36(2):75﹣79.
    [15]赵丽萍,江岩.AB﹣8、NKA 2种大孔树脂对药桑椹花青素分离纯化的比较[J].食品科技,2013,(4):219﹣223.
    [16]Fu C,Yang D,Peh W Y,et al.Structure and Antioxidant Activities of Proanthocyanidins from Elephant Apple(Dillenia indica Linn.)[J].Journal of Food Science,2015,80(10):2191﹣2199.
    [17]Snyder A B,Sweeney C F,Rodriguez﹣Saona L E,et al.Rapid authentication of concord juice concentration in a grape juice blend using Fourier﹣Transform infrared spectroscopy and chemometric analysis[J].Food Chemistry,2014,147(6):295.
    [18]杜娟,彭惜媛,马芳,等.黑豆和牵牛子红外光谱的分析与鉴定[J].光谱学与光谱分析,2014,34(9):2429﹣2433.
    [19]Kalboussi N,Rapaport A,Bayen T,et al.Optimal control of membrane filtration systems[J].2017.
    [20]Lunte S M,Blankenship K D,Read S A.Detection and identification of procyanidins and flavanols in wine by dual﹣electrode liquid chromatography﹣electrochemistry[J].Analyst,1988,113(1):99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700