奶牛乳腺炎致病机制的表观遗传调控研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress on Epigenetic Regulation of the Pathogenesis of Cow Mastitis
  • 作者:张晓建 ; 赵俭 ; 张伟 ; 安志兴 ; 王三虎 ; 白跃宇
  • 英文作者:ZHANG Xiao-jian;ZHAO Jian;ZHANG Wei;AN Zhi-xing;WANG San-hu;BAI Yue-yu;School of Animal Science, Henan Institute of Science and Technology;Animal Health Supervision of Henan Province,Bureau of Animal Husbandry of Henan Province;
  • 关键词:奶牛乳腺炎 ; 表观遗传调控 ; DNA甲基化 ; 组蛋白修饰 ; 非编码RNA
  • 英文关键词:Cow mastitis;;Epigenetic regulation;;DNA methylation;;Histone modification;;Non coding RNA
  • 中文刊名:ZGXM
  • 英文刊名:Chinese Journal of Animal Science
  • 机构:河南科技学院动物科技学院;河南省畜牧局动物卫生监督所;
  • 出版日期:2019-01-10
  • 出版单位:中国畜牧杂志
  • 年:2019
  • 期:v.55
  • 基金:河南省基础与前沿技术研究计划(152300410095、132300410014);; NSFC-河南人才培养联合基金(U1504306);; 2014年度高层次人才科研启动项目(206010615007)
  • 语种:中文;
  • 页:ZGXM201901005
  • 页数:7
  • CN:01
  • ISSN:11-2083/S
  • 分类号:27-33
摘要
奶牛乳腺炎作为制约奶牛养殖业发展的主要疾病之一,其受到环境、理化因素以及不同病原菌等多种因素影响。表观遗传调控作为一种新的分子调控机制,在奶牛乳腺炎致病过程中起着十分重要的作用。本文拟从DNA甲基化、组蛋白修饰和非编码RNA等多方面综述其在奶牛乳腺炎发生、发展中的作用,并从多维度提出奶牛乳腺炎表观遗传调控机制未来研究策略,以期为奶牛乳腺炎致病机制研究以及有效防控提供参考。
        As one of the main diseases that impede the development of dairy cattle farming industry, cow mastitis is deeply influenced by environmental, physicochemical factors and different pathogenic bacteria. Epigenetic regulation, being a new molecular regulation mechanism, plays a very important role in the pathogenesis of cow mastitis. Here, the roles of DNA methylation, histone modification and non-coding RNA in the occurrence and development of cow mastitis were reviewed, and the future research strategies of the epigenetic regulation mechanism of cow mastitis were proposed in multi-dimension, in order to provide references for the pathogenesis research and effective prevention and control of cow mastitis.
引文
[1]Swinkels J M,Hilkens A,Zoche-Golob V,et al.Social influences on the duration of antibiotic treatment of clinical mastitis in dairy cows[J].J Dairy Sci,2015,98(4):2369-2380.
    [2]Bird A.Perceptions of epigenetics[J].Nature,2007,447(7143):396-398.
    [3]Tajima S,Suetake I,Takeshita K,et al.Domain structure of the dnmt1,dnmt3a,and dnmt3b DNA methyltransferases[J].Adv Exp Med Biol,2016,945:63-86.
    [4]Liao J,Karnik R,Gu H,et al.Targeted disruption of DNMT1,DNMT3A and DNMT3B in human embryonic stem cells[J].Nat Genet,2015,47(5):469-478.
    [5]Cai T T,Zhang J,Wang X,et al.Gene-gene and gene-sex epistatic interactions of DNMT1,DNMT3A and DNMT3B in autoimmune thyroid disease[J].Endocr J,2016,63(7):643-653.
    [6]Li H,Li W,Liu S,et al.DNMT1,DNMT3A and DNMT3Bpolymorphisms associated with gastric cancer risk:A systematic review and meta-analysis[J].EBio Medicine,2016,13:125-131.
    [7]Mao Y J,Zhu X R,Li R,et al.Methylation analysis of CXCR1in mammary gland tissue of cows with mastitis induced by Staphylococcus aureus[J].Genet Mol Res,2015,14(4):12606-12615.
    [8]Vanselow J,Yang W,Herrmann J,et al.DNA-remethylation around a STAT5-binding enhancer in the alphaS1-casein promoter is associated with abrupt shutdown of alphaS1-casein synthesis during acute mastitis[J].J Mol Endocrinol,2006,37(3):463-477.
    [9]Wang X S,Zhang Y,He Y H,et al.Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows[J].Genet Mol Res,2013,12(4):6228-6239.
    [10]Song M,He Y,Zhou H,et al.Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis[J].Sci Rep,2016,6:29390.
    [11]Kornberg R D,Lorch Y.Twenty-five years of the nucleosome,fundamental particle of the eukaryote chromosome[J].Cell,1999,98(3):285-294.
    [12]Fischle W,Wang Y,Allis C D.Histone and chromatin crosstalk[J].Curr OpinCell Biol,2003,15(2):172-183.
    [13]Peterson C L,Laniel M A.Histones and histone modifications[J].Curr Biol,2004,14(14):546-551.
    [14]He Y,Song M,Zhang Y,et al.Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by Staphylococcus aureus[J].BMCGenomics,2016,17:565.
    [15]Huang S,Chi Y,Qin Y,et al.CAPG enhances breast cancer metastasis by competing with PRMT5 to modulate STC-1transcription[J].Theranostics,2018,8(9):2549-2564.
    [16]Modak R,Das Mitra S,Krishnamoorthy P,et al.Histone H3K14and H4K8 hyperacetylation is associated with Escherichia coliinduced mastitis in mice[J].Epigenetics,2012,7(5):492-501.
    [17]Ochoa-Zarzosa A,Villarreal-Fernandez E,Cano-Camacho H,et al.Sodium butyrate inhibits Staphylococcus aureus internalization in bovine mammary epithelial cells and induces the expression of antimicrobial peptide genes[J].Microb Pathog,2009,47(1):1-7.
    [18]Kutanzi K,Kovalchuk O.Exposure to estrogen and ionizing radiation causes epigenetic dysregulation,activation of mitogenactivated protein kinase pathways,and genome instability in the mammary gland of ACI rats[J].Cancer Biol Ther,2013,14(7):564-573.
    [19]Wang B,Li D,Kovalchuk O.p53 Ser15 phosphorylation and histone modifications contribute to IR-induced miR-34a transcription in mammary epithelial cells[J].Cell Cycle,2013,12(13):2073-2083.
    [20]Lan X,Atanassov B S,Li W,et al.USP44 Is an integral component of N-CoR that contributes to gene repression by deubiquitinating histone H2B[J].Cell Rep,2016,17(9):2382-2393.
    [21]Bhatnagar S,Gazin C,Chamberlain L,et al.TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein[J].Nature,2014,516(7529):116-120.
    [22]Strahl B D,Allis C D.The language of covalent histone modifications[J].Nature,2000,403(6765):41-45.
    [23]Gondaira S,Higuchi H,Iwano H,et al.Innate immune response of bovine mammary epithelial cells to Mycoplasma bovis[J].JVet Sci,2018,19(1):79-87.
    [24]Prenzel T,Begus-Nahrmann Y,Kramer F,et al.Estrogen-dependent gene transcription in human breast cancer cells relies upon proteasome-dependent monoubiquitination of histone H2B[J].Cancer Res,2011,71(17):5739-5753.
    [25]Spolverini A,Fuchs G,Bublik D R,et al.let-7b and let-7c microRNAs promote histone H2B ubiquitylation and inhibit cell migration by targeting multiple components of the H2Bdeubiquitylation machinery[J].Oncogene,2017,36(42):5819-5828.
    [26]Sun J,Aswath K,Schroeder S G,et al.MicroRNA exp-ression profiles of bovine milk exosomes in response to Staphylococcus aureus infection[J].BMC Genomics,2015,16:806.
    [27]Naeem A,Zhong K,Moisa S J,et al.Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis[J].J Dairy Sci,2012,95(11):6397-6408.
    [28]Jin W,Ibeagha-Awemu E M,Liang G,et al.Transcriptome micro RNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles[J].BMCGenomics,2014,15:181.
    [29]Kang L,Huo Y,Wang R F,et al.In vivo imaging of breast tumors by a(99m)Tc radiolabeled probe targeting microRNA-155 in mice models[J].Beijing Da Xue Xue Bao.Yi Xue Ban,2018,50(2):326-330.
    [30]LeMay-Nedjelski L,Mason-Ennis J K,Taibi A,et al.Omega-3polyunsaturated fatty acids time-dependently reduce cell viability and oncogenic microRNA-21 expression in estrogen receptor-positive breast cancer cells(MCF-7)[J].Int J Mol Sci,2018,19(1):244.
    [31]Wang X P,Luoreng Z M,Zan L S,et al.Expression patterns of miR-146a and miR-146b in mastitis infected dairy cattle[J].Mol Cell Probes,2016,30(5):342-344.
    [32]Yang W,Li X,Qi S,et al.lncRNA H19 is involved in TGF-beta1-induced epithelial to mesenchymal transition in bovine epithelial cells through PI3K/AKT Signaling Pathway[J].Peer J,2017,5:1-15.
    [33]Silva J M,Boczek N J,Berres M W,et al.LSINCT5 is over ex-pressed in breast and ovarian cancer and affects cellular proliferation[J].RNA Biology,2011,8(3):496-505.
    [34]Huang J,Zhou N,Watabe K,et al.Long non-coding RNAUCA1 promotes breast tumor growth by suppression of p27(Kip1)[J].Cell Death Dis,2014,5:1-10.
    [35]Lanz R B,Chua S S,Barron N,et al.Steroid receptor RNAactivator stimulates proliferation as well as apoptosis in vivo[J].Mol Cell Biol,2003,23(20):7163-7176.
    [36]Ginger M R,Gonzalez-Rimbau M F,Gay J P,et al.Persistent c h a n g e s i n g e n e e x p r e s s i o n i n d u c e d b y e s t r o g e n a n d progesterone in the rat mammary gland[J].Mol Endocrinol,2001,15(11):1993-2009.
    [37]Wang H,Xiao Y,Wu L,et al.Comprehensive circular RNAprofiling reveals the regulatory role of the circRNA-000911/miR-449a pathway in breast carcinogenesis[J].Int J Oncol,2018,52(3):743-754.
    [38]Zhou J,Zhang W W,Peng F,et al.Downregulation of hsa_circ_0011946 suppresses the migration and invasion of the breast cancer cell line MCF-7 by targeting RFC3[J].Cancer Manag Res,2018,10:535-544.
    [39]Yan N,Xu H,Zhang J,et al.Circular RNA profile indicates circular RNA VRK1 is negatively related with breast cancer stem cells[J].Oncotarget,2017,8(56):95704-95718.
    [40]Lee J T.Epigenetic regulation by long noncoding RNAs[J].Science,2012,338(6113):1435-1439.
    [41]Bonasio R,Shiekhattar R.Regulation of transcription by long noncoding RNAs[J].Annu Rev Genet,2014,48:433-455.
    [42]Yoon J H,Abdelmohsen K,Gorospe M.Posttranscriptional gene regulation by long noncoding RNA[J].J Mol Biol,2013,425(19):3723-3730.
    [43]Shore A N,Rosen J M.Regulation of mammary epithelial cell homeostasis by lncRNAs[J].Int J Biochem Cell Biol,2014,54:318-330.
    [44]Standaert L,Adriaens C,Radaelli E,et al.The long noncoding RNA Neat1 is required for mammary gland development and lactation[J].RNA,2014,20(12):1844-1849.
    [45]Lo P K,Wolfson B,Zhou X,et al.Noncoding RNAs in breast cancer[J].Briefings Funct Genomics,2016,15(3):200-221.
    [46]Tong C,Chen Q,Zhao L,et al.Identification and characterization of long intergenic noncoding RNAs in bovine mammary glands[J].BMC Genomics,2017,18(1):468.
    [47]Preusser C,Hung L H,Schneider T,et al.Selective release of circRNAs in platelet-derived extracellular vesicles[J].JExtracell Vesicles,2018,7(1):1424473.
    [48]Zhang C,Wu H,Wang Y,et al.Expression patterns of circular RNAs from primary kinase transcripts in the mammary glands of lactating rats[J].J Breast Cancer,2015,18(3):235-241.
    [49]Liao J Y,Wu J,Wang Y J,et al.Deep sequencing reveals a global reprogramming of lncRNA transcriptome during EMT[J].Biochim Biophys Acta Mol Cell Res,2017,1864(10):1703-1713.
    [50]Zhang C,Wu H,Wang Y,et al.Circular RNA of cattle casein genes are highly expressed in bovine mammary gland[J].JDairy Sci,2016,99(6):4750-4760.
    [51]Su J,Qi Y,Liu S,et al.Revealing epigenetic patterns in gene regulation through integrative analysis of epigenetic interaction network[J].Mol Biol Rep,2012,39(2):1701-1712.
    [52]Rothbart S B,Krajewski K,Nady N,et al.Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation[J].Nat Struct Mol Biol,2012,19(11):1155-1160.
    [53]Zhang X,Zhao X,Fiskus W,et al.Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas[J].Cancer Cell,2012,22(4):506-523.
    [54]Li M A,Amaral P P,Cheung P,et al.A lncRNA fine tunes the dynamics of a cell state transition involving Lin28,let-7 and de novo DNA methylation[J].eLife,2017,6:1-24.
    [55]Zhou J,Yang L,Zhong T,et al.H19 lncRNA alters DNAmethylation genome wide by regulating S-adenosylhomocysteine hydrolase[J].Nat Commun,2015,6:10221.
    [56]Oertel B G,Doehring A,Roskam B,et al.Genetic-epigenetic interaction modulates mu-opioid receptor regulation[J].Hum Mol Genet,2012,21(21):4751-4760.
    [57]Kalin J H,Wu M,Gomez A V,et al.Targeting the CoRESTcomplex with dual histone deacetylase and demethylase inhibitors[J].Nat Com,2018,9(1):53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700