“三段式”岩石滑坡的锁固段破坏模式及演化机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Failure pattern and evolution mechanism of locking section in rock slope with three-section landslide mode
  • 作者:黄达 ; 张晓景 ; 顾东明
  • 英文作者:HUANG Da;ZHANG Xiao-jing;GU Dong-ming;Key Laboratory of New Technology for Construction in Mountainous Area, Ministry of Education, Chongqing University;School of Civil Engineering and Transportation, Hebei University of Technology;
  • 关键词:岩质边坡 ; 锁固段 ; 三段式滑坡 ; 岩桥 ; 破坏机制
  • 英文关键词:rock slope;;locking section;;three-section landslide;;rock bridge;;failure mechanism
  • 中文刊名:YTGC
  • 英文刊名:Chinese Journal of Geotechnical Engineering
  • 机构:重庆大学山地城镇建设与新技术教育部重点实验室;河北工业大学土木与交通学院;
  • 出版日期:2017-09-26 16:44
  • 出版单位:岩土工程学报
  • 年:2018
  • 期:v.40;No.327
  • 基金:国家自然科学基金面上项目(41472245,41672300);; 中央高校基本科研业务费重大项目(106112016CDJZR208804)
  • 语种:中文;
  • 页:YTGC201809006
  • 页数:9
  • CN:09
  • ISSN:32-1124/TU
  • 分类号:45-53
摘要
锁固段的地质结构及力学性质是"三段式"岩石滑坡的关键控制因素。根据"三段式"滑坡的地质结构特征,采用物理模型试验和颗粒流数值模拟方法,研究了锁固段岩桥角(后缘拉裂隙与前缘蠕滑段末端连线和水平方向间的角度)对锁固段的破坏模式及演化机制的影响规律。锁固段破裂的模式主要有张拉贯通破坏和张–剪混合贯通破坏两种。随着锁固段岩桥角的增大,锁固段破坏模式由张拉破坏向张–剪混合破坏转变:岩桥角小于90°时,为张拉破坏;岩桥角位于90°~110°之间,为张–剪混合破坏;当岩桥角大于110°时,锁固段并不发生破坏,边坡以其它形式发生破坏。通过锁固段的应变时程分析,随着锁固段岩桥角增大,锁固段区域拉应力的影响范围逐渐减小,由全部受拉向全部受压转变。
        The geological structure and mechanical properties of locking section are the key control factors to the rock slope with three-section landslide mode. According to the characteristics of the geological structure of three-section landslide, physical model tests and particle flow numerical simulation method were used to study the influences of the angle of rock bridge of locking section(the angle between the line of the end of the tensile crack to the end of the creep section and the horizontal direction) on the failure mode and failure evolution of locking section in the rock slope with three-section landslide mode. The failure modes of the locking section can be summarized as tensile coalescence and mixed tensile-shear coalescence. With the increase of the angle of rock bridge of the locking section, the failure mode is changed from the tensile coalescence to the mixed tensile-shear one. When the angle is less than 90°, the failure of slope is caused by the tensile coalescence. When the angle is between 90°and 110°, the failure of slope is caused by the mixed tensile-shear coalescence. When the angle is greater than 110°, the failure occurs in other areas instead of the locking section. Based on the analysis of the strain-time curve of locking section, the tensile zone of the locking section decreases gradually with the increase of the angle of the rock bridge of the locking section, and its stress state is changed from the whole tension to the whole compression.
引文
[1]黄润秋.岩石高边坡发育的动力过程及其稳定性控制[J].岩石力学与工程学报,2008,27(8):1525–1544.(HUANG Run-qiu.Geodynamical process and stability control of high rock slope development[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(8):1525–1544.(in Chinese))
    [2]查小刚.断层是洒勒山滑坡的基础:水和土体重力是它的决定因素[J].水土保持通报,1983(3):27–33.(ZHA Xiao-gang.Fault is basic of Saleshan landslide:the determinant is water and soil gravity[J].Journal of Water and Soil Conservation,1983(3):27–33.(in Chinese))
    [3]童立强,张晓坤,李曼,等.“6·28”关岭滑坡特大地质灾害应急遥感调查研究[J].国土资源遥感,2010(3):65–68.(TONG Li-qiang,ZHANG Xiao-kun,LI Man,et al.Emergency remote sensing research on super large geological disasters caused by“6·28”Guanling landslide[J].Remote Sensing for Land&Resources,2010(3):65–68.(in Chinese))
    [4]孔纪名,田述军,阿发友,等.贵州关岭“6·28”特大滑坡特征和成因[J].山地学报,2010,28(6):725–731.(KONG Ji-ming,TIAN Shu-jun,A Fa-you,et al.Guizhou Guiling landslide formation mechanism and its characteristics[J].Journal of Mountain Science,2010,28(6):725–731.(in Chinese))
    [5]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(3):433–454.(HUANG Run-qiu.Large-scale landslides and their sliding mechanisms in China since the 20th century[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433–454.(in Chinese))
    [6]李建林,王乐华,孙旭曙.节理岩体卸荷各向异性力学特性试验研究[J].岩石力学与工程学报,2014,33(5):892–900.(LI Jian-lin,WANG Le-hua,SUN Xu-shu.Experimental study on anisotropic mechanical characteristics of jointed rock masses under unloading condition[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(5):892–900.(in Chinese))
    [7]YANG S Q,JING H W,XU T.Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression[J].International Journal of Fracture,2011,168(2):227–250.
    [8]杨圣奇.断续三裂隙砂岩强度破坏和裂缝扩展特征研究[J].岩土力学,2013,34(1):31–39.(YANG Sheng-qi.Study of strength failure and crack coalescence behavior of sandstone containing three pre-existing fissures[J].Rock and Soil Mechanics,2013,34(1):31–39.(in Chinese))
    [9]殷跃平.斜倾厚层山体滑坡视向滑动机制研究——以重庆武隆鸡尾山滑坡为例[J].岩石力学与工程学报,2010,29(2):217–226.(YIN Yue-ping.Mechanism on apparent dip sliding of inclined bedding rockslide:a case study of Jiweishan rockslide in Wulong,Chongqing[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(2):217–226.(in Chinese))
    [10]岑夺丰,黄达,黄润秋.岩质边坡断续裂隙阶梯状滑移模式及稳定性计算[J].岩土工程学报,2014,36(4):695–706.(CEN Duo-feng,HUANG Da,HUANG Run-qiu.Step-path failure mode and stability calculation of jointed rock slopes[J].Chinese Journal of Geotechnical Engineering,2014,36(4):695–706.(in Chinese))
    [11]EBERHARDT E,SSTEAD D,COGGAN J S,Hybrid finite-discrete-element modeling of progressive failure in massive rock slopes[C]//ISRM 2003-Technology roadmap for rock mechanics.South African Institute of Mining and Metallurgy,2003.
    [12]GUGLIELMI Y,CAPPA F.Regional-scale relief evolution and large landslides:insights from geomechanical analyses in the Tinée Valley(southern French Alps)[J].Geomorphology,2009,117(11):121–129.
    [13]钟助,黄达,黄润秋.“挡墙溃屈”型滑坡锁固段抗滑稳定性研究[J].岩土工程学报,2016,38(9):1734–1740.(ZHONG Zhu,HUANG Da.Anti-sliding stability of locked patch of rock slopes with landslide mode of retaining wall collapse[J].Chinese Journal of Geotechnical Engineering,2016,38(9):1734–1740.(in Chinese))
    [14]秦四清,李国梁,薛雷.锁固体破裂标志性地震震级与峰值强度点地震震级的统计关系[J].地球物理学进展,2012,27(5):1841–1844.(QIN Si-qing,LI Guo-liang,XUE Lei.A statistical relation between the symbolic earthquake magnitude and the earthquake magnitude at peak strength point during the failure process of looked patch[J].Progress in Geophysics,2012,27(5):1841–1844.(in Chinese))
    [15]黄润秋,陈国庆,唐鹏.基于动态演化特征的锁固段型岩质滑坡前兆信息研究[J].岩石力学与工程学报,2017,36(3):521–533.(Precursor information of locking segment landslides based on transient characteristics[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(3):521–533.(in Chinese))
    [16]黄达,岑夺丰.单轴静–动相继压缩下单裂隙岩样力学响应及能量耗散机制颗粒流模拟[J].岩石力学与工程学报,2013,32(9):1926–1936.(HUANG Da,CEN Duo-feng.Mechanical response and energy dissipation mechanism of rock specimen with a single fissure under static and dynamic uniaxial compression successively using particle flow code simulation[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(9):1926–1936.(in Chinese))
    [17]刘顺桂,刘海宁,王思敬,等.断续节理直剪试验与PFC2D数值模拟分析[J].岩石力学与工程学报,2008,27(9):1828–1836.(LIU Shun-gui,LIU Hai-ning,WANG Si-jing,et al.Direct shear tests and PFC2D numerical simulation of intermittent joints[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1828–1836.(in Chinese))
    [18]徐金明,谢芝蕾,贾海涛.石灰岩细观力学特性的颗粒流模拟[J].岩土力学,2010,31(增刊2):390–395.(XU Jin-ming,XIE Zhi-lei,JIA Hai-tao.Simulation of mesomechanical properties of limestone using particle flow code[J].Rock and Soil Mechanics,2010,31(S2):390–395.(in Chinese))
    [19]余华中,阮怀宁,褚卫江.岩石节理剪切力学行为的颗粒流数值模拟[J].岩石力学与工程学报,2013,32(7):1482–1490.(YU Hua-zhong,RUAN Huai-ning,CHU Wei-jiang.Particle flow code modeling of shear behavior of rockjoints[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(7):1482–1490.(in Chinese))
    [20]Itasca Consulting Group Inc.PFC2D(particle flow code in 2D)theory and background[R].Minnesota:Itasca Consulting Group Inc,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700