Ca~(2+)信号通路调控肌纤维类型转化的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Advances in the Studies on the Ca~(2+) Signaling Pathway Regulating Muscle Fiber Type Transformation
  • 作者:侯普馨 ; 侯艳茹 ; 白艳苹 ; 苏琳 ; 赵丽华 ; 靳烨
  • 英文作者:HOU Puxin;HOU Yanru;BAI Yanping;SU Lin;ZHAO Lihua;JIN Ye;College of Food Science and Engineering, Inner Mongolia Agricultural University;
  • 关键词:CaN信号通路 ; CaMK信号通路 ; 肌纤维类型转化 ; 肉品品质
  • 英文关键词:CaN signaling pathway;;CaMK signaling pathway;;muscle fiber type transformation;;meat quality
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:内蒙古农业大学食品科学与工程学院;
  • 出版日期:2018-12-03 16:35
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.600
  • 基金:“十三五”国家重点研发计划重点专项(2016YFE0106200);; 国家自然科学基金地区科学基金项目(31660439);; 内蒙古自治区高等学校科学研究项目(NJZY16060);; 内蒙古自然科学基金面上项目(2018MS03050)
  • 语种:中文;
  • 页:SPKX201911041
  • 页数:6
  • CN:11
  • ISSN:11-2206/TS
  • 分类号:297-302
摘要
Ca~(2+)信号通路包括钙调神经磷酸酶(calcineurin,CaN)和钙调蛋白激酶(calmodulin kinase,CaMK)两条Ca~(2+)依赖性信号传导途径,其被激活都会促进快肌纤维向慢肌纤维转化。本文综述了CaN和CaMK的组成结构、作用机理、影响Ca~(2+)信号通路调控的主要因素、Ca~(2+)信号通路在肌纤维类型转化中的作用以及与肉品品质的关系,并对其研究方向作出展望,以期为今后通过遗传、营养等措施改善肉品品质提供理论依据。
        The Ca~(2+) signaling pathway include two Ca~(2+)-dependent signaling pathways, calcineurin(CaN) and calmodulin kinase(CaMK), whose activation can promote the transition from fast to slow muscle fibers. This review summarizes the structures and mechanism of action of the CaN and CaMK signaling pathways, the major factors affecting the regulation of the Ca~(2+) signaling pathway, the role of the Ca~(2+) signaling pathway in the transformation of muscle fiber types and its relationship with meat quality. Future research directions are also proposed. Hopefully, this review will provide a theoretical basis for improving meat quality through genetic and nutritional approaches.
引文
[1]尹丽卿.不同饲养方式下苏尼特羊肌纤维特性和MyHC基因对肉质的影响[D].呼和浩特:内蒙古农业大学,2016:5-6.
    [2]苏琳.巴美肉羊肌纤维特性、糖酵解潜力对羊肉品质的影响和MyHC表达量分析[D].呼和浩特:内蒙古农业大学,2015:1-11.
    [3]郭秋平,文超越,王文龙,等.肌纤维类型转化的分子信号通路及其营养调控进展[J].动物营养学报,2017,29(6):1836-1842.DOI:10.3969/j.issn.1006-267x.2017.06.002.
    [4]袁媛,刘月光,史新娥,等.调控骨骼肌纤维类型转化的信号通路[J].中国生物化学与分子生物学报,2010,26(9):796-801.
    [5]ALLEN D L,LEINWAND L A.Intracellular calcium and myosin isoform transitions.calcineurin and calcium-calmodulin kinase pathways regulate preferential activation of the IIa myosin heavy chain promoter[J].Journal of Biological Chemistry,2002,277(47):45323-45330.DOI:10.1074/jbc.M208302200YI.
    [6]KLEE C B,REN H,WANG X.Regulation of the calmodulinstimulated protein phosphatase,calcineurin[J].Journal of Biological Chemistry,1998,273(22):13367-13370.DOI:10.1074/jbc.273.22.13367.
    [7]MOLKENTIN J D,LU J R,ANTOS C L,et al.A calcineurindependent transcriptional pathway for cardiac hypertrophy[J].Cell,1998,93(2):215-228.DOI:10.1016/S0092-8674(00)81573-1.
    [8]刘志云,魏美芳.钙调神经磷酸酶在高血压心肌肥厚中的表达[J].中国当代医药,2010,17(29):6-8.DOI:10.3969/j.issn.1674-4721.2010.29.003.
    [9]TAVI P,ALLLEN D G,NIEMELA P,et al.Calmodulin kinase modulates Ca2+release in mouse skeletal muscle[J].The Journal of Physiology,2003,551(1):5-12.DOI:10.1111/j.1469-7793.2003.00005.x.
    [10]WU H,KANATOUS S B,THURMOND F A,et al.Regulation of mitochondrial biogenesis in skeletal muscle by CaMK[J].Science,2002,296:349-352.DOI:10.1126/science.1071163.
    [11]JAIN J,MCCAFFFREY P G,MINER Z,et al.The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun[J].Nature,1993,365:352-355.DOI:10.1038/365352a0.
    [12]SCHREIBER S L,CRABTREE G R.The mechanism of action of cyclosporin A and FK506[J].Immunology Today,1992,13(4):136-142.DOI:10.1016/0167-5699(92)90111-J.
    [13]CHIN E R,OLSON E N,RICHARDSON J A,et al.A calcineurindependent transcriptional pathway controls skeletal muscle fiber type[J].Genes&Development,1998,12(16):2499-2509.DOI:10.1101/gad.12.16.2499.
    [14]NAYA F J,MERCER B,SHELTON J,et al.Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo[J].Journal of Biological Chemistry,2000,275(7):4545-4548.DOI:10.1074/jbc.275.7.4545.
    [15]MIYAZAKI M,HITOMI Y,KIZAKI T,et al.Calcineurin-mediated slow-type fiber expression and growth in reloading condition[J].Medicine and Science in Sports and Exercise,2006,38(6):1065-1072.DOI:10.1249/01.mss.0000222833.43520.6e.
    [16]MU Xiaodong,BROWN L D,LIU Yewei,et al.Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers[J].Physiological Genomics,2007,30(3):300-312.DOI:10.1152/physiolgenomics.00286.2006.
    [17]YUAN Yuan,SHI Xin’e,LIU Yueguang,et al.FoxO1 regulates muscle fiber-type specification and inhibits calcineurin signaling during C2C12 myoblast differentiation[J].Molecular&Cellular Biochemistry,2011,348(1/2):77-87.DOI:10.1007/s11010-010-0640-1.
    [18]PARSONS S A,WILKINS B J,BUENONO O F,et al.Altered skeletal muscle phenotypes in calcineurin Aαand Aβgene-targeted mice[J].Molecular&Cellular Biology,2003,23(12):4331-4343.DOI:10.1128/mcb.23.12.4331-4343.2003.
    [19]CHAKKALAKAL J V,HARRISON M A,CARBONETTO S,et al.Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice[J].Human Molecular Genetics,2004,13(4):379-388.DOI:10.1093/hmg/ddh037.
    [20]王建华.肌纤维类型转化通路CaN/NFAT相关基因的表达分析及CAML基因的分离鉴定[D].武汉:华中农业大学,2010:8-12.
    [21]束婧婷,宋迟,徐文娟,等.IGF-I-CaN-NFATc3信号通路相关基因在鸭发育早期骨骼肌中的同步表达及其与肌纤维性状相关性[J].中国农业科学,2015,48(6):1195-1204.DOI:10.3864/j.issn.0578-1752.2015.06.15.
    [22]张凯,高原,苏艳红.骨骼肌纤维类型转换的分子信号机制[J].湖北体育科技,2013,32(4):314-317.DOI:10.3969/j.issn.1003-983X.2013.04.011.
    [23]LIU Y W,SHEN T S,RANDALL W R,et al.Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle[J].Journal of Muscle Research and Cell Motility,2005,26(1):13-21.DOI:10.1007/s10974-005-9002-0.
    [24]SWOAP S J,HUNTER R B,STEVENSON E J,et al.The calcineurin-NFAT pathway and muscle fiber-type gene expression[J].AJP Cell Physiology,2000,279(4):915-924.DOI:10.1152/ajpcell.2000.279.4.C915.
    [25]ALLEN D L,SARTORIUS C A,SYCURO L K,et al.Different pathways regulate expression of the skeletal myosin heavy chain genes[J].Journal of Biological Chemistry,2001,276(47):43524-43533.DOI:10.1074/jbc.M108017200.
    [26]SMITH J A,KOHN T A,CHETTY A K,et al.CaMK activation during exercise is required for histone hyperacetylation and MEF2A binding at the MEF2 site on the GLUT4 gene[J].American Journal of Physiology,2008,295(1):698-704.DOI:10.1152/ajpendo.00747.2007.
    [27]OU Na,LIU Gang,JIANG Fan,et al.Effect of chronic electrical stimulation on transformation of myosin heavy chain isoforms in differentiated C2C12 cells[J].Journal of Third Military Medical University,2012(8):710-714.
    [28]GRONDARD C,BIONDI O,PARISET C,et al.Exercise-induced modulation of calcineurin activity parallels the time course of myofibre transitions[J].Journal of Cellular Physiology,2008,214(1):126-135.DOI:10.1002/jcp.21168.
    [29]MCKINSEY T A,ZHANG C L,LU J,et al.Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation[J].Nature,2000,408:106-111.DOI:10.1038/35040593.
    [30]FLüCK M,WAXHAM M N,HAMILTON M T,et al.Skeletal muscle Ca2+-independent kinase activity,increases during either hypertrophy or running[J].Journal of Applied Physiology,2000,88(1):352-358.DOI:10.1152/jappl.2000.88.1.352.
    [31]KAO H Y,VERDEL A,TSAI C C,et al.Mechanism for nucleocytoplasmic shuttling of histone deacetylase[J].Journal of Biological Chemistry,2001,276(50):47496-47507.DOI:10.1074/jbc.M107631200.
    [32]AKIMOTO T,RIBAR T J,WILLIAMS R S,et al.Skeletal muscle adaptation in response to voluntary running in Ca2+/calmodulindependent protein kinase IV-deficient mice[J].American Journal of Physiology Cell Physiology,2004,287(5):1311-1319.DOI:10.1152/ajpcell.00248.2004.
    [33]WRIGHT D C,HUCKER K A,HOLLOSZY J O,et al.Ca2+and AMPK both mediate stimulation of glucose transport by muscle contractions[J].Diabetes,2004,53(2):330-335.DOI:10.2337/diabetes.53.2.330.
    [34]CRABTREE G R.Generic signals and specific outcomes:signaling through Ca2+,calcineurin,and NF-AT[J].Cell,1999,96(5):611-614.DOI:10.1016/S0092-8674(00)80571-1.
    [35]RAO A,LUO C,HOGAN P G.Transcription factors of the NFATfamily:regulation and function[J].Annual Review of Immunology,1997,15(15):707-747.DOI:10.1146/annurev.immunol.15.1.707.
    [36]李范玲.运动对大鼠骨骼肌纤维类型的影响以及CaN/NFAT信号机制初步研究[D].长沙:湖南师范大学,2011:2-3.
    [37]MCCULLAGH K J,CALABRIA E,PALLAFACCHINA G,et al.NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(29):10590-10595.DOI:10.1073/pnas.0308035101.
    [38]YAMAGUCHI T,OMORI M,TANAKA N,et al.Distinct and additive effects of sodium bicarbonate and continuous mild heat stress on fiber type shift via calcineurin/NFAT pathway in human skeletal myoblasts[J].American Journal of Physiology-Cell Physiology,2013,305(3):C323-C333.DOI:10.1152/ajpcell.00393.2012.
    [39]SCHIAFFINO S.Fibre types in skeletal muscle:a personal account[J].Acta Physiologica,2010,199(4):451-463.DOI:10.1111/j.1748-1716.2010.02130.x.
    [40]VECHETTI-JúNIOR I J,AGUIAR A F,DE SOUZA R W,et al.NFAT isoforms regulate muscle fiber type transition without altering CaN during aerobic training[J].International Journal of Sports Medicine,2013,34(10):861-867.DOI:10.1055/s-0032-1331758.
    [41]BLACK B L,OLSON E N.Transcriptional control of muscle development by myocyte enhancer factor-2(MEF2)proteins[J].Annual Review of Cell and Developmental Biology,1998,14(1):167-196.DOI:10.1146/annurev.cellbio.14.1.167.
    [42]WU H,NAYA F J,MCKINSEY T A,et al.MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type[J].EMBO Journal,2000,19(9):1963-1973.DOI:10.1093/emboj/19.9.1963.
    [43]贾安峰,冯京海,张敏红.调控骨骼肌肌纤维类型转化的因素及机制[J].动物营养学报,2014,26(5):1151-1156.DOI:10.3969/j.issn.1006-267x.2014.05.004.
    [44]POTTHOFF M J,WU H,ARNOLD M A,et al.Histone deacetylase degradation and MEF2 activation promote the formation of slowtwitch myofibers[J].Journal of Clinical Investigation,2007,117(9):2459-2467.DOI:10.1172/JCI31960.
    [45]HENNEBRY A,BERRY C,SIRIETT V,et al.Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression[J].American Journal of Physiology Cell Physiology,2009,296(3):525-582.DOI:10.1152/ajpcell.00259.2007.
    [46]廖八根,徐勇,薛耀明.钙调神经磷酸酶在耐力运动大鼠骨骼肌纤维类型和大小转变中的作用[J].中国运动医学杂志,2008,27(5):551-555;613.DOI:10.3969/j.issn.1000-6710.2008.05.002.
    [47]吴金富.Ca2+/Ca N途径在悬吊再负荷大鼠肌纤维类型转化中的作用[D].北京:北京体育大学,2010:34-38.
    [48]尹丽琴,李范玲,汤长发,等.不同强度运动对骨骼肌纤维MHC亚型转化及CaN/NFATc1信号通路的影响[J].中国应用生理学杂志,2017,33(4):360-364.DOI:10.12047/j.cjap.5462.2017.087.
    [49]PASSIER R,ZENG H,FREY N,et al.CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo[J].Journal of Clinical Investigation,2000,105(10):1395-1406.DOI:10.1172/JCI8551.
    [50]ROSE A J,KIENS B,RICHTER E A.Ca2+-calmodulin-dependent protein kinase expression and signaling in skeletal muscle during exercise[J].Journal of Physiology,2006,574(3):889-903.DOI:10.1113/jphysiol.2006.111757.
    [51]HUDSON M B,PRICE S R.Calcineurin:a poorly understood regulator of muscle mass[J].International Journal of Biochemistry&C e l l B i o l o g y,2 0 1 3,4 5(1 0):2 1 7 3-2 1 7 8.D O I:1 0.1 0 1 6/j.biocel.2013.06.029.
    [52]MUSARòA,MCCULLAGH K J,NAYA F J,et al.IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1[J].Nature,1999,400:581-585.DOI:10.1038/23060.
    [53]SERRANO A L,MURGIA M,PALLAFACCHINA G,et al.Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(23):13108-13113.DOI:10.1073/pnas.231148598.
    [54]SHARLO C A,LOMONOSOVA Y N,TURTIKOVA O V,et al.The role of GSK-3 phosphorylation in the regulation of slow myosin expression in soleus muscle during functional unloading[J].Biochemistry Supplement,2018,12(1):85-91.DOI:10.7868/S023347551706010X.
    [55]FAJARDO V A,RIETZE B A,CHAMBERS P J,et al.Effects of sarcolipin deletion on skeletal muscle adaptive responses to functional overload and unload[J].American Journal of Physiology-Cell Physiology,2017,313(2):154-161.DOI:10.1152/ajpcell.00291.2016.
    [56]LOMONOSOVA Y N,TURTIKOVA O V,SHENMAN B S.Reduced expression of MyHC slow isoform in rat soleus during unloading is accompanied by alterations of endogenous inhibitors of calcineurin/NFAT signaling pathway[J].Journal of Muscle Research&Cell Motility,2015,37(1/2):7-16.DOI:10.1007/s10974-015-9428-y.
    [57]LIU W,CHEN G,LI F,et al.Calcineurin-NFAT signaling and neurotrophins control transformation of myosin heavy chain isoforms in rat soleus muscle in response to aerobic treadmill training[J].Journal of Sports Science&Medicine,2014,13(4):934-944.
    [58]尹靖东.动物肌肉生物学与肉品科学[M].北京:中国农业大学出版社,2011:15-23.
    [59]段小果.大青山山羊肉肌纤维特性及品质的研究[D].呼和浩特:内蒙古农业大学,2017:2-7.
    [60]刘露露,宋阳,苏丁丁.猪肌纤维发育及其对肉品质的影响[J].湖南畜牧兽医,2017(2):36-38.DOI:10.3969/j.issn.1006-4907.2017.02.017.
    [61]RYU Y C,KIM B C.The relationship between muscle fiber characteristics,postmortem metabolic rate,and meat quality of pig longissimus dorsi muscle[J].Meat Science,2005,71(2):351-357.DOI:10.1016/j.meatsci.2005.04.015.
    [62]LESEIGNEURMEYNIER A,GANDEMER G.Lipid composition of pork muscle in relation to the metabolic type of the fibres[J].Meat Science,1991,29(3):229-241.DOI:10.1016/0309-1740(91)90052-R.
    [63]OFFER G.Modelling of the formation of pale,soft and exudative meat:effects of chilling regime and rate and extent of glycolysis[J].Meat Science,1991,30(2):157-184.DOI:10.1016/0309-1740(91)90005-B.
    [64]KIM M,FIELITZ J J,SHELTON J,et al.Protein kinase D1stimulates MEF2 activity in skeletal muscle and enhances muscle performance[J].Molecular&Cellular Biology,2008,28(11):3600-3609.DOI:10.1128/MCB.00189-08.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700