Ni-Co合金催化剂在CH_4-CO_2重整中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Ni-Co alloy catalysts in CH_4-CO_2 reforming
  • 作者:韩冰 ; 张桂华 ; 邢闯 ; 吕鹏 ; 吕成学 ; 杨瑞芹 ; 盖希坤
  • 英文作者:HAN Bing;ZHANG Gui-hua;XING Chuang;L Peng;L Cheng-xue;YANG Rui-qin;GAI Xi-kun;School of Biological and Chemical Engineering,Zhejiang University of Science & Technology;Zhejiang Provincial Key Lab.for Chem.& Bio.Processing Technology of Farm Products;
  • 关键词:Ni-Co合金催化剂 ; CH4-CO2重整 ; 等体积浸渍法 ; 积碳
  • 英文关键词:Ni-Co alloy catalyst;;CH4-CO2 reforming;;equal volume impregnation method;;carbon deposition
  • 中文刊名:SXHG
  • 英文刊名:Applied Chemical Industry
  • 机构:浙江科技学院生物与化学工程学院;浙江省农产品化学与生物加工技术重点实验室;
  • 出版日期:2019-01-10
  • 出版单位:应用化工
  • 年:2019
  • 期:v.48;No.323
  • 基金:浙江省自然科学基金项目(LY17B060002);; 浙江省农产品化学与生物技术加工重点实验室开放基金项目(2013KF0307);; 浙江省生化制造协同创新中心开放基金项目(2016KF0017);; 浙江科技学院交叉预研项目(2015JC05Y)
  • 语种:中文;
  • 页:SXHG201901032
  • 页数:5
  • CN:01
  • ISSN:61-1370/TQ
  • 分类号:139-143
摘要
采用等体积浸渍法制备了系列Ni-Co/γ-Al2O3合金催化剂,用于CH_4-CO_2重整反应,用固定床连续反应装置对催化剂进行了活性评价。结果表明,在还原温度900℃,Ni/Co摩尔比为1∶1~1∶1. 5时能较好地形成合金。Ni-Co合金的形成有助于提高催化剂在CH_4-CO_2重整反应中的活性和稳定性。当Ni/Co摩尔比为1∶1. 5时,CH_4、CO_2和总碳转化率达到最高,催化剂上积碳最少,反应50 h后不失活。
        A series of Ni-Co/γ-Al2 O3 alloy catalysts were prepared by the equal volume impregnation method,and used in the reforming reaction of CH_4-CO_2. The activity of the catalysts was measured by the fixed bed continuous reactions. The results show that the alloy could well be formed when the reduction temperature of 900 ℃ and the Ni/Co ratio is 1∶ 1 to 1∶ 1. 5. The formation of Ni-Co alloy can improve the activity and stability of catalyst in CH_4-CO_2 reforming reaction. The conversion of CH_4,CO_2 and total carbon was highest,and the amount of carbon deposition was least when the Ni/Co molar ratio of 1∶ 1. 5. The Ni-Co/γ-Al2 O3 alloy catalysts with Ni/Co molar ratio of 1 ∶ 1. 5 did not lose its life after the reforming reaction of CH_4-CO_2 for 50 h.
引文
[1] Sun L Z,Tan Y S,Zhang Q D,et al. Tri-reforming of coal bed methane to syngas over the Ni-Mg-ZrO2catalyst[J].Journal of Fuel Chemistry and Technology,2012,40(7):831-837.
    [2]沈利红,徐军科.沼气重整制氢方法选择[J].广州化工,2012,40(17):36-38.
    [3] Seungjin K,Kwangkeun C,Jinwook C. Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry[J]. International Journal of Hydrogen Energy,2013,38(8):3488-3496.
    [4] Stagg S,Romeo E,Padro C,et al. Effect of promotion with Sn on supported Pt catalysts for CO2reforming of CH4[J]. Journal of Catalysis,1998,178(1):137-145.
    [5] Siri G J,Casella M L,Santori G F,et al. Tin/Platinum on alumina as catalyst for dehydrogenation of isobutane. influence of the preparation procedure and of the addition of lithium on the catalytic properties[J]. Industrial&Engineering Chemistry Research,1997,36(11):4821-4826.
    [6] Ren H,Hansgen D A,Stottlemyer A L,et al. Replacing platinum with tungsten carbide(WC)for reforming reactions:similarities in ethanol decomposition on Ni/Pt and Ni/WC surfaces[J]. ACS Catalysis,2011,1(4):390-398.
    [7] Djinovic'P,Batista J,Pintar A. Efficient catalytic abatement of greenhouse gases:methane reforming with CO2using a novel and thermally stable Rh-CeO2catalyst[J].International Journal of Hydrogen Energy,2012,37(3):2699-2707.
    [8] Ghelamallah M,Granger P. Impact of barium and lanthanum incorporation to supported Pt and Rh onα-Al2O3in the dry reforming of methane[J]. Fuel,2012,97:269-276.
    [9] Gonzalez-delaCruz V M,Pere1iguez R,Ternero F,et al. In situ XAS study of synergic effects on Ni-Co/Zr O2methane reforming catalysts[J]. Journal of Physical Chemistry C,2012,116(4):2919-2926.
    [10] Rabis A,Rodriguez P,Schmidt T J. Electrocatalysis for polymer electrolyte fuel cells:recent achievement and future challenges[J]. ACS Catalysis,2012,2(5):864-890.
    [11] Liu S W,Zhao Q,Tong M Y,et al. Ultrafine Nickel-Cobalt alloy nanoparticles incorporated into three-dimensional porous graphitic carbon as an electrode material for super capacitors[J]. Journal of Materials Chemistry A,2016,43(4):17080-17086.
    [12] Kazuhiro T,Katsutoshi N,Kentaro N,et al. Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane[J]. Journal of Catalysis,2005,232(2):268-275.
    [13] Wang F,Xu L,Zhang J,et al. Tuning the metal-support interaction in catalysts for highly efcient methane dry reforming reaction[J]. Appl Catal B-Environ,2016,180:511-520.
    [14]代小平,余长春,沈师孔.钴负载量和焙烧温度对F-T合成用Co/Al2O3催化剂活性的影响[J].催化学报,2000,21(2):163-164.
    [15] Zhang J G,Wang H,Ajay K. Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2reforming of CH4[J]. Applied Catalysis A:General,2008,339(2):123-128.
    [16] Erd9helyi A,Cserenyi J,Papp E,et al. Catalytic reaction of methane with carbon dioxide over supported Palladium[J]. Applied Catalysis A:General,1994,108(2):205-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700